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Abstract 

Machine learning is increasingly being applied to neuroimaging data. However, most machine learning 

algorithms have not been designed to accommodate neuroimaging data, which typically has many more 

data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the 

relative efficacy of different machine learning regression algorithms for different types of neuroimaging 

data are not known. Here, we sought to quantify the performance of a variety of machine learning 

algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor 

effect sizes. The contribution of additional machine learning techniques – embedded feature selection 

and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning 

regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, 

the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in 

comparison to standard multiple regression. The different machine learning regression algorithms 

produced varying results, which depended on sample size, feature set size, and predictor effect size. When 

the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression 

performed well at most sample sizes and feature set sizes. However, when the effect size was small, only 

the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 

400. Random Forest also produced a moderate performance for small effect sizes, but could do so across 

all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. 

These data provide empirical evidence for the differential performance of various machines on 

neuroimaging data, which are dependent on number of sample size, features and effect size.  

 

 

 

 

 

Keywords: Machine learning; Neuroimaging; Regression algorithms; reproducibility  



MACHINE LEARNING NEUROIMAGING DATA 

 4 

1. Introduction 

An increasing number of projects and consortia are now collecting large neuroimaging datasets. 

These include IMAGEN (Schumann et al., 2010), , the Alzheimer’s Disease Neuroimaging Initiative (ADNI, 

Jack et al., 2008), the Human Connectome project (Van Essen et al., 2012), ENIGMA (Thompson et al., 

2017), the 1000 Functional Connectomes project (Biswal et al., 2010) and the Adolescent Brain Cognitive 

Development study (ABCD; https://abcdstudy.org/, see Vol. 32 of Developmental Cognitive Neuroscience, 

which is dedicated to the ABCD study). In addition, there are data-sharing facilities such as NeuroVault 

(neurovault.org, Gorgolewski et al., 2015), OpenfMRI (openfmri.org, Poldrack et al., 2013), and the 

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC; Kennedy, Haselgrove, Riehl, Preuss, 

& Buccigrossi, 2016). These sources of high-dimensional imaging data offer exciting opportunities to 

produce generalizable and reproducible research findings in arenas such as predicting disease trajectories, 

or linking behavioral and personality factors to functional and structural imaging data. 

As large samples become more commonplace in neuroimaging, analytical tools developed for 

data science, such as machine learning, are more frequently applied to neuroimaging data (Jollans & 

Whelan, 2017; Woo et al., 2017). A wide variety of studies have used machine learning algorithms to 

classify individuals based on structural or functional imaging data using, among other algorithms, Support 

Vector Machines (e.g. Costafreda et al., 2009; Davatzikos et al., 2011; Koutsouleris et al., 2012), Random 

Forest (e.g. Ball et al. 2014, Ramirez et al., 2010), and Naïve Bayes classifiers (e.g. Adar et al., 2016; Wang, 

Redmond, Bertoux, Hodges & Hornberger, 2016; Zhou et al., 2015). There have also been successful 

efforts to predict continuous outcome variables, mostly using Relevance or Support vector regression, 

such as age (Dosenbach et al., 2010; Franke et al., 2010; Mwangi et al., 2013), cognitive ability 

(Stonnington et al.,2010), language ability (Formisano et al., 2008), and disease severity in patients with 

major depression (Mwangi et al., 2012). While these algorithms have been increasingly used in 

neuroimaging research, none of them were specifically developed for neuroimaging data, which have high 

dimensionality, inherent multicollinearity, and typically small signal-to-noise ratios. Below we briefly 

review important considerations when analysing large neuroimaging datasets, and how machine learning 

methods may address these issues. 

1.1. Outcome prediction  

Several authors have emphasized the importance of moving away from explanatory and 

univariate analysis procedures and towards multivariate outcome prediction in psychology and 

https://abcdstudy.org/
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neuroscience (Gabrieli et al., 2015; Jollans & Whelan, 2016; Poldrack, 2011; Westfall & Yarkoni, 2016). 

Using regression approaches, effective outcome prediction requires that accurate outcome estimations 

can be achieved for new (i.e., unseen) cases. Prediction models exploit between-subject heterogeneity to 

make individual-level predictions rather than utilizing differences in group means (Lo et al., 2015). 

Embracing machine learning for outcome prediction would significantly contribute to the generalizability 

and reproducibility of neuroimaging research, and improve the ability of neuroimaging to explore 

individual differences (Dubois & Adolphs, 2016). There are several methods used to estimate and improve 

the generalizability of a regression model. Most common among these is cross-validation (CV) in which 

the data are split into ‘training’ and ‘test’ sets. Models are developed using only the training set, and 

model performance is assessed using the test set. The training and test set must be kept separate for all 

analysis steps (Cawley & Talbot, 2010). Typically, this split is carried out multiple times, alternating the 

data that are included in the test set. While some neuroimaging studies use test sets comprised of only 

one observation (leave-one-out CV; e.g. Brown et al., 2012; Clark et al., 2014; Duff et al., 2012; Niehaus et 

al., 2014), larger test sets (leave-k-out, where k typically equals 5 or 10; e.g. Wang et al., 2013; Whelan et 

al., 2014) are preferable as they provide more accurate model performance estimates (Kohavi, 1995). CV 

can also be used to provide an out-of-sample estimate of model performance within the analysis pipeline 

itself, in order to optimize parameters for the regression model. When multiple layers of CV are used for 

internal and external validation of model performance this is referred to as ‘nested’ CV (see Figure 1). By 

embedding a layer of CV within the training set of the ‘outer layer’ of CV it is made possible to train and 

validate a model within the training set itself. The test set remains a separate dataset used to carry out a 

final validation of model performance, removing the need for a separate validation set. The reader is 

referred to Varoquaux et al., 2017 for an empirical investigation of CV on neuroimaging data. In large 

datasets comprised of data from multiple sites, generalizability can be further quantified by using leave-

site-out CV, where data from one site is withheld as a test set and the model is developed using data from 

the remaining sites (Dwyer, Falkai, & Koutsouleris, 2018). Assessing model performance on the withheld 

test set is then a more rigorous test of generalizability and the obtained measure of generalizability can 

be further optimized using nested leave-site-out CV (Dwyer et al., 2018). Such complex CV techniques 

have been used to build generalizable and accurate prediction models of treatment outcomes in psychosis 

using multisite psychosocial, sociodemographic, and psychometric data (Koutsouleris et al., 2016) and a 

combination of clinical and neuroimaging data (Koutsouleris et al., 2018). 

1.2. Prediction with neuroimaging data 
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Depending on the voxel size, single MRI images can contain from 100,000 to a million voxels. As 

sample sizes in neuroimaging are often modest even very large studies will have more voxels than 

participants. A higher ratio of features to cases increases the tendency of the model to fit to noise in that 

sample (i.e., overfitting; see Whelan & Garavan, 2014 for a discussion specific to neuroimaging). 

Overfitting will result in the model fitting poorly when it is applied to a new dataset. Even when using a 

smaller number of regions of interest (ROIs) instead of voxels, combining multiple data sources (such as 

neuroimaging data and cognitive data or demographics), imaging modalities, or conditions will result in a 

large number of features. Two strategies are commonly adopted for dealing with high-dimensional data: 

dimension reduction and regularization. A further potentially useful method for neuroimaging data is 

bootstrap aggregation (bagging). 

1.2.1. Dimension reduction.  

Reducing the number of features in a regression model (i.e., dimension reduction), will almost 

always be beneficial for attenuating overfitting when working with neuroimaging data. There exists a wide 

array of methods for reducing the number of input variables in neuroimaging data (Mwangi, Tian & 

Soares, 2014). These methods work by selecting a subset of features or by summarizing features in new 

variables. Some of these methods, such as principal and independent component analysis (PCA and ICA), 

have long been standard tools in neuroscience. Dimension reduction techniques can be separated by 

whether they preserve the original values of features (this is not the case for ICA and PCA), whether they 

consider each feature in isolation or not, and whether they are unsupervised (using only the feature 

values) or supervised (using the feature and dependent variable values). The dimension reduction 

techniques that are often favored with machine learning approaches in neuroimaging studies are feature 

selection techniques (supervised methods that do not alter the original feature values). Feature selection 

methods can broadly be categorized into ‘filter’ methods, ‘wrapper’ methods, and embedded methods 

(see Chandrashekar and Sahin, 2014). Filter methods are unimodal, considering each feature individually. 

The application of filter methods involves evaluating the outcome of each feature on some statistical test 

(e.g., a t-test or Pearson’s correlation with the outcome variable), and only retaining those features with 

the highest values. A key benefit of filter methods is low computational cost when compared to much 

more computationally expensive wrapper methods (Nnamoko et al., 2014), which are multimodal and 

consider subsets of features. Popular wrapper methods include forward selection, backward elimination, 

and recursive feature elimination, all of which carry out step-wise search procedures including or 

excluding features in each step to arrive at the feature set which maximizes algorithm performance. 
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Wrapper methods lend themselves well to embedding within optimization of the regression model (e.g. 

an adaptive forward-backward greedy algorithm integrated within a model; Jie et al., 2015). Embedded 

methods integrate feature selection directly into optimization of the regression model. The most widely 

used embedded feature selection methods use regularization (discussed further below), which integrate 

the selection of a feature set into model optimization by choosing a method for selecting features based 

on optimization of hyperparameters. A key advantage of embedded methods is that any researcher input 

regarding minimum effect sizes or desired feature set size which is typically necessary in filter and wrapper 

methods is eliminated, reducing the possible bias introduced to the model at this step. Novel wrapper 

methods, such as an adaptive forward-backward greedy algorithm, can also be integrated within models 

(Jie et al., 2015). Sophisticated pipelines can combine both dimension reduction and feature selection 

techniques. For example, Koutsouleris et al. (2018) implemented principal components analysis to reduce 

the dimensionality of MRI data and then used a wrapper method, specifically a greedy sequential 

backward elimination algorithm, to identify the principal components that optimally predicted the 

outcome. 

In neuroimaging, good outcome predictions may rely on large feature sets, as any cognitive or 

behavioral variable of interest will most likely be best explained by a network of spatially correlated brain 

regions. Good regression models with neuroimaging data may therefore include interaction effects 

between features. To account for this, the feature selection methods that should be used with 

neuroimaging data will consider feature sets rather than individual features. Accordingly, previous work 

has shown that both wrapper methods (Tangaro et al., 2015) and embedded methods (Tohka, Moradi, 

Huttunen & ADNI, 2016) are preferable to filter methods with neuroimaging data. However, wrapper 

methods are sometimes prone to overfitting and are typically more computationally intense than 

embedded methods (Saeys, Inza, & Larrañaga, 2007). Furthermore, as neuroimaging data have an 

inherently low signal-to-noise ratio, the individual predictive power of each voxel or ROI is likely to be 

quite small. It may therefore be advantageous to consider complex regression models that allow for the 

inclusion of some predictors with low effect sizes. Due to the amount of unknown factors, including the 

unknown ideal number of features and the optimal threshold for inclusion of features with low effect 

sizes, the focus of this paper with regard to dimension reduction will be on embedded methods, which 

can be implemented without much researcher input. 

1.2.2. Regularization.  
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Regularization is a method that attenuates overfitting by penalizing the size of the regression 

weights as model complexity increases. Regularization is often achieved through the L1- or the L2-norm. 

The L1-norm, as implemented in the Least Absolute Shrinkage and Selection Operator (LASSO), penalizes 

regression weights based on their absolute size, and results in sparse models (i.e., some regression 

weights can be set to zero). The L2-norm (also known as Ridge Regression or Tikhonov Regularization) 

penalizes regression weights based on their squared values, and does not result in sparse models. 

However, with highly multicollinear data (such as neuroimaging data) neither L1- nor L2-norm 

regularization are ideal because the large number of non-zero coefficients in models using the L2-norm is 

unable to produce parsimonious solutions, and the L1-norm is inadequate in accounting for highly 

correlated groups of predictors (Ogutu, Schulz-Streeck & Piepho, 2012; Mwangi, Tian & Soares, 2014). The 

Elastic Net (EN; Zou & Hastie, 2005) combines L1-norm and L2-norm regularization, and has the advantage 

of being an embedded feature selection algorithm, and thus produces a sparse solution in which groups 

of correlated features are included or excluded. The Elastic Net has gained popularity among 

neuroimaging researchers in recent years, and has been successfully used in several studies with large 

samples (e.g. Chekroud et al., 2016; Whelan et al., 2014).  

1.2.3. Bootstrap aggregation (bagging). 

 The low signal-to-noise ratio of neuroimaging data calls for a tool to increase the stability of 

findings and reduce error in outcome estimates. Stability can be estimated using bootstrapping (Efron & 

Tibshirani, 1997), where the dataset is randomly sampled with replacement many times to minimize the 

effect of outliers and estimate the true population mean (Hall & Robinson, 2009). Like CV, bootstrapping 

serves a purely descriptive purpose when used to estimate population metrics. However, a related 

approach termed bootstrap aggregation (bagging; Breiman, 1996), uses bootstrapping to improve 

stability within the model optimization framework. Bagging uses bootstrapped samples to generate 

multiple estimates of a calculation or metric, and an aggregate of these estimates is created. These 

aggregated estimates can be used instead of singular outcome estimates at every step of the analysis. 

Bagging has previously been used for embedded feature selection with large genetic datasets and showed 

significant improvements over standard non-bagged embedded methods in terms of model accuracy and 

stability (Abeel, Helleputte, Peer, Dupont & Saeys, 2010). Bagging is an effective way to decrease error, 

particularly with datasets that have a low signal-to-noise ratio and high multicollinearity (Zahari, Ramli & 

Mokhtar, 2014).  

1.3. Researcher degrees-of-freedom 
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Another important consideration in neuroimaging is that flexible or ‘exploratory’ analysis 

introduces a high risk of false positive results or overestimated effect sizes (Button et al., 2013). Therefore, 

predetermined analysis pipelines and analytical decisions aid in producing reproducible results. The 

tendency for researchers to screen data before data collection is completed, to carry out multiple 

iterations of analyses without reporting the findings (e.g., with and without covariates), or to tweak 

parameters for group inclusion to better represent the problem has been termed ‘researcher degrees of 

freedom’ (Simmons, Nelson, & Simonsohn, 2011; Loken & Gelman, 2017; Westfall & Yarkoni, 2016). In the 

case of machine learning frameworks, the researcher input can potentially be greatly reduced, limiting 

the room for subjectivity and reducing the researcher degrees of freedom. To enhance objectivity, the 

role of the researcher should be confined to collecting and preparing the best data possible to describe 

the problem of interest, based on domain knowledge (Dubois & Adolphs, 2016). Ideally, dimension 

reduction, model building, and parameter optimization should be data-driven. 

1.4. Effect of study design and ML method on model performance 

The choice of which ML methods to use, or whether to use them at all, is an important 

consideration but it is not clearly defined in the literature. A parameter to be defined before commencing 

any machine learning analysis is the CV framework to use. While leave-one-out CV yields more accurate 

predictions from neuroimaging data than split-half or two-fold CV (Price, Ramsden, Hope, Friston, & 

Seghier, 2013), it also generates more variable and biased estimates of out of sample accuracy (Varoquaux 

et al., 2017). Ten-fold CV produces more stable accuracy estimates and is recommended (Kohavi, 1995).  

The use of feature selection, and the method used, can also impact model performance with 

neuroimaging data. Some feature selection techniques, univariate t-test filtering (filter method) and 

recursive feature elimination (wrapper method), have little impact on model performance and may only 

increase computational expense (e.g., classification of individuals with mild cognitive impairment or 

Alzheimer’s disease in Chu, Hsu, Chou, Bandettini, & Lin, 2012). The Elastic Net (embedded method), 

yields more accurate predictions than filter and wrapper methods for some classification problems 

(Tohka, Moradi, Huttune & ADNI, 2016). Using embedded methods like the Elastic Net can also remove 

the need for prior dimension reduction techniques (e.g., principal components analysis) as they effectively 

remove the influence of redundant features (Dwyer et al., 2018).  

Bagging has been used with neuroimaging data for Alzheimer’s disease detection (Shen et al., 

2012), discrimination between Alzheimer’s disease and mild cognitive impairment (Ramirez et al., 2018) 
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and between Parkinson’s disease and atypical Parkinsonian syndrome (Garraux et al., 2013). Bagging 

outperforms boosting algorithms, another class of sophisticated ensemble technique (Ramírez, Górriz, 

Ortiz, Padilla, & Martínez-Murcia, 2016). As these studies did not specifically investigate the additive 

effects of bagging, the use of bagging with neuroimaging data remains to be further examined. Moreover, 

Munson and Caruana (2009) demonstrated that while bagging can continue to improve model 

performance with increasing feature set size, performance does eventually plateau for most data. The 

relationship between feature set size and model performance with bagging has not been formally tested 

using neuroimaging data. Additionally, Munson and Caruana (2009) reported that feature selection can 

also reduce model performance when combined with bagging. The potentially negative interaction 

between feature selection and bagging is also unclear for neuroimaging data.  

A final crucial parameter known to impact model performance is sample size. Sample size greatly 

affects prediction accuracy in ML models using neuroimaging data (Arbabshirani, Plis, Sui, & Calhoun, 

2017). The accuracy of ML models in predicting age (Franke et al., 2010) and identifying schizophrenia 

(Schnack & Kahn, 2016) from neuroimaging data increases with training set size. This is likely because 

smaller training sets are more heterogenous (Schnack & Kahn, 2016).  While some models, such as the 

Elastic Net (Zou & Hastie, 2005) are relatively robust to smaller sample sizes where the number of 

predictors is far bigger than the number of observations, it is unclear how changes in the ratio of features 

to observations impact performance of the Elastic Net and other algorithms with neuroimaging data.   

1.5. ML algorithms and neuroimaging studies 

Here we have selected a number of machine learning algorithms (see Bzdok, Altman,& Krzywinski, 

2018 for a treatment of the overlap between statistics and machine learning) as the target of a structured 

quantitative examination of their performance on the same neuroimaging datasets. The selected 

algorithms have been applied to linear regression problems in neuroimaging research to date and are 

being implemented in machine learning toolboxes intended for use with neuroimaging data. The 

statistical tool historically used most often for linear regression and prediction problems in psychological 

and biological science – multiple regression (MR) - is used as a ‘baseline’ against which to compare the 

machine learning algorithms. In MR, it is assumed that the output variable is a linear combination of all 

input variables, and regression weights are determined for each variable based on this assumption. MR is 

a non-sparse method and may thus not be suitable for very high-dimensional data. A non-sparse machine 

learning algorithm evaluated here is Gaussian Process regression (GPR). GPR is a non-parametric 

probabilistic Bayesian method that uses a predefined covariance function (‘kernel’) to optimize the 
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function of input values describing the output. While GPR has been applied with some success to various 

prediction problems using MRI data (e.g. Momte-Rubio et al., 2018), choosing the kernel in GPR 

appropriately for neuroimaging data may prove challenging. A Multiple Kernel Learning (MKL) approach 

implemented here uses the L1 norm to create a sparse combination of multiple kernels (Rakotomamonjy 

et al., 2008). MKL was previously found to outperform support vector machine models when using fMRI 

data to classify stimulus types (Schrouff et al., 2018). Another kernel method is Kernel Ridge Regression 

(KRR), which uses a kernel to make ridge regression (regularization via the L2 norm) non-linear (Shawe-

Taylor & Cristianini, 2004). KRR can be thought of as a specific case of GPR but lacks the ability to give 

confidence bounds. KRR has been used to predict treatment outcomes in children with autism spectrum 

disorders based on fMRI to biological motion stimuli (Yang et al., 2016). The Elastic Net (EN) combines the 

L1 and L2 penalties to arrive at a linear solution and has been used to predict substance use outcomes in 

a large sample of adolescents based on functional and structural MRI (Whelan et al., 2014). For MR, GPR, 

MKL, KRR, and EN, each input feature is assigned a weight, which may be zero when regularization is used 

(EN and KRR). This is not the case for Random Forest (RF) models. Rather, a number of decision trees are 

grown based on the input features and the output. The predicted outcomes from multiple trees are 

aggregated using bootstrap aggregation, and in this way the tendency to overfit is greatly attenuated 

using RF. RF has been used in many neuroimaging studies for a variety of applications such as classification 

of patients (e.g. Fredo et al., 2018; Zhu et al., 2018). 

1.6.  The current study 

Here, the efficacy of the five machine learning tools outlined above for use with large 

neuroimaging datasets was assessed. The performance of a number of machine learning algorithms used 

for linear regression problems in neuroimaging was compared to standard multiple regression as a 

baseline to evaluate the added value of choosing each machine learning algorithm. We conducted an 

empirical evaluation of the extent to which feature selection and resampling procedures influenced 

results. The effect that data dimensionality has on accuracy was quantified by varying both sample size 

and number of features. Using simulated neuroimaging data with varying predictor effect sizes as well as 

real neuroimaging data, this study first compared performance of the Elastic Net, standard multiple 

regression, a state-of-the-art machine learning toolbox for imaging data (PRoNTo, Schrouff et al., 2013), 

and an implementation of the Random Forest method available in Matlab. Furthermore, we examined 

how the addition of bagging and feature selection affected the accuracy of results from simulated and 

real data, using an embedded feature selection approach developed with the intention of minimizing 
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researcher degrees of freedom. Based on previous work, it was anticipated that both feature selection 

and regularization would improve predictions for datasets with large feature sets by creating less complex 

models, and that bagging would reduce overfitting for small samples by reducing the effect of outliers.  
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2. Methods 

2.1. Machine Learning protocol 

The analysis steps outlined below were implemented in MATLAB 2016b using custom analysis 

scripts for EN, MR, and RF, and the PRoNTo Toolbox for GPR, MKL, and KRR. Analysis scripts used are 

available at github.com/ljollans/RAFT. Specific aspects of the steps are described below.  

2.1.1. Nested cross-validation.  

The dataset was initially divided into 10 CV folds, using 90% of the dataset (the training set) to 

create a regression model which was then tested on the remaining 10% of the data (the test set). This 

step was performed 10 times, with each fold serving as the test set once. Within the training set, an 

additional nested CV with 10 partitions was used for feature selection, and for optimization of model 

parameters. The final (optimized) model from each CV fold was used to make outcome predictions for the 

test set (10% of the data) and the accuracy of predictions for the entire dataset was used to quantify 

model fit (see Figure 1).  

 

Figure 1: Representation of the nested cross-validation framework 

 

2.1.2. Feature selection.  

An embedded feature selection method was tested; this used prediction accuracy and the stability 

of model performance across subsets of the sample to learn and to adapt the prediction model. Initial 

feature ranking, based on the mean squared error of univariate regressions of each feature with the 

outcome (I.e. the individual ‘prediction strength’), was used to define feature subsets, and nested CV 
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was used to assess the stability of findings across different subsets of the data. The key element of 

this method is an embedded thresholding step, which adjusts the criterion for feature selection 

according to the performance of feature subsets. This thresholding considered 1) the prediction 

strength of each feature in each cross-validation fold and 2) the stability of a feature’s prediction 

strength across cross-validation folds. A detailed explanation of this feature selection step is provided 

in Supplementary information. 

2.1.3. Bootstrap aggregation.  

All calculations other than the final outcome prediction were validated using 25-fold bootstrap 

aggregation (bagging, see Figure 2). Instead of performing the analysis once using all data, summary 

datasets were created by randomly sampling data with replacement in each iteration. Results from each 

iteration are aggregated using the median value.  

2.1.4. Model hyperparameter optimization.  

Of the algorithms that were tested (other than those in the PRoNTo toolbox) only the Elastic Net 

has model parameters to optimize. The Elastic Net uses two parameters: λ and α. Alpha represents the 

weight of LASSO vs. ridge regularization which the Elastic Net uses, and λ is the regularization coefficient. 

Both LASSO and Ridge regression apply a penalty for large regression coefficient values, but LASSO 

regularization favors models with fewer features, making it more prone to excluding features.  Parameter 

values between 0.1 and 1 for α and between 0.032 (10-1.5) and 1 for λ were tested.  Alpha values were 

chosen on a linear scale (0.1, 0.325, 0.55 0.775, 1) and λ values on a logarithmic scale (0.032, 0.075, 0.177, 

0.422, 1). The lower thresholds for the parameter values were chosen based on observations of models 

with smaller parameter values failing to converge with neuroimaging models (including the data used 

here). Here, five values of λ and α were chosen primarily to manage computational expense while also 

maintaining an adequate range of values as indicated by exploratory comparisons of analyses with a larger 

range of parameter values. For each model, features excluded by the Elastic Net were noted, and features 

were removed after the model optimization step if the Elastic Net removed them in more than half of all 

bagging iterations. 
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Figure 2: Analysis framework using bagging and nested cross-validation. CV: Cross-Validation. 

 

2.1.5. Model validation.  

After the nested CV step, the combination of parameters (where applicable) that resulted in the 

model with the lowest prediction error was identified for each nested CV partition. Prediction error was 

quantified using root mean squared error. The optimal model parameters from each nested CV partition 

were used to identify the parameters to be used for the final prediction model in each main CV fold. The 

evaluation of model fit was carried out using the complete vector of outcome predictions from all CV 

folds.  

2.2. Simulated and Real Data 

2.2.1. Constructing simulated data.  

The analysis methods were tested on simulated datasets, built to resemble real neuroimaging 

datasets in terms of the between-feature correlations, and the range of correlations between features 

and the outcome variable. In order to ensure that the simulated data were reflective of the between-

feature correlations and effect size of real data, neuroimaging data from the IMAGEN study (Schumann 

et al., 2010) were used as a guide (see Supplementary Information). Correlation coefficients for 

correlations between features (within and between contrasts) and between features and the continuous 

outcome variable were calculated (see Figure 3). Simulated data were constructed to mirror these 

correlation strengths as closely as possible, while achieving variation in predictor strength between data 



MACHINE LEARNING NEUROIMAGING DATA 

 16 

types. There are a number of different neuroimaging atlases that parcellate the brain into various 

numbers of ROIs. We sought to capture differences in the covariance structure of neuroimaging datasets 

by simulating atlases with either 278 or 97 ROIs. Simulated data were constructed by combining three 

layers of data matrices to capture the following elements of real neuroimaging data: (1) a non-random 

relationship to an outcome variable, (2) a cluster structure within the data with increased collinearity 

within subgroups of features or “clusters”, (3) a low baseline correlation level between all features of the 

dataset. The construction of simulated data occurred as follows: 

Step 1: Predictor and outcome creation. A random matrix X was created with 2000 observations 

by 1000 features. A vector b representing beta weights, and a vector Y representing the continuous 

outcome variable were created such that X*b=Y. Here the vector b was created using a range of 

predefined weightings similar to the range of effect sizes for features in X in relation to Y based on the 

real neuroimaging reference data. 

Step 2: Inter-region of interest (ROI) correlation clusters. A covariance matrix was created that 

was used to create 30 small clusters of features that were strongly correlated with each other using the 

mvnrnd function in MATLAB. The correlation coefficients for these Inter-ROI correlations were between 

r=.2 and r=.8, peaking at r=.6. The 1000 features created in Step 1 were assigned to either one of 20 

‘clusters’ of 33 features or 10 clusters of 34 features (i.e., analogous to correlated networks of extent = 33 

or 34 ROIs). In this way, a feature within a cluster was more strongly correlated with other features within 

the same cluster, and was only weakly correlated with features outside the cluster. This cluster size was 

chosen to best approximate the correlation structure in the real neuroimaging reference data. While the 

subsets of the simulated feature sets were selected without regard for this cluster structure, the random 

nature of subset selection was expected to result in a proportional number of features from each cluster 

being selected, in line with what would be expected when selecting a subset of ROIs. 

Step 3: Whole-brain correlations. Similar to the process used in Step 2 the mvnrnd function was 

used to additionally create one matrix the size of X with features that were all correlated with each other 

at r=.25 on average. 

Step 4: Dataset creation. The layers of data created in Steps 1, 2, and 3 were combined using 

different weighting for each layer to achieve some variation in predictor strength (i.e., the final dataset 

was a weighted summation of all three data layers). The range of correlations 1) between features and 2) 

between features and the outcome was manipulated to produce datasets with small to moderate 
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predictor effect sizes (Simulatedsmall), and datasets with strong predictor effect sizes (SimulatedLarge; see 

Figure 3).  

 

 

Figure 3. Correlation strength by percentage of features for correlations between features (Inter-ROI 

correlations) and between features and the outcome variable (ROI-outcome) for real and simulated 

datasets. ES: effect size. 

 

2.2.2. Real MRI data.  

In order to test if findings transfer to real-world imaging data two real neuroimaging datasets 

were selected. First, a dataset from the IMAGEN study (Schumann et al., 2010) that included data from 

967 participants was selected. The linear outcome variable used was the score on the block design 

subscale of the WISC-IV (Wechsler, 2003). Data drawn from grey matter volume (GMV) and the Global 
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Cognitive Assessment Task (GCA, Pinel et al., 2007) were used. In the GCA task participants were 

presented with visual and auditory stimuli for short sentences (e.g. ‘We easily found a taxi in Paris’), 

subtractions (e.g. ‘Subtract nine from eleven’), and motor instructions (e.g. ‘Press the left button three 

times’). Maps for subtractions and sentence presentations were used. Data from these two GCA contrasts 

and for GMV were extracted using the same functionally defined atlas used to create simulated data (Shen 

et al., 2013), as outlined in the Supplementary Information. A total of 834 ROIs were used. Note that the 

data from the GCA task were not used to establish the correlation coefficients to construct simulated 

datasets (see above). Based on previous work examining the relationship between intelligence and 

neuroimaging findings (Deary, Penke & Johnson, 2010) this dataset was presumed to have low-moderate 

effect sizes and was thus termed Imagingsmall. The IMAGEN project was approved by all local ethics 

research committees, and informed consent was obtained from participants and their parents/guardians. 

A detailed description of the study protocol and data acquisition has been previously published 

(Schumann et al., 2010). 

The second real neuroimaging dataset was comprised of 1360 structural T1 MRI images drawn 

from a number of sources:  the Autism Brain Imaging Data Exchange II (ABIDE II; Di Martino et al., 2017); 

the Neuro Bureau – Berlin: Mind and Brain dataset 

(http://fcon_1000.projects.nitrc.org/indi/pro/Berlin.html); the Beijing Normal University Enhanced 

Sample (BNU, http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html); the Centre for 

Biomedical Research Excellence (COBRE; http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) 

dataset; the Dallas Lifespan Brain Study (DLBS; http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html) 

dataset;  the Washington University in St. Louis (WUSL; Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012) sample; the Nathan Kline Institute Rockland Sample - Release 1 (NKI; Nooner et al., 2012), the 

Information eXtraction from Images dataset (IXI; http://www.brain-development.org), and the Southwest 

University Adult Lifespan Dataset (SALD; Wei et al., 2017). These data were freely available online through 

either NITRC.org or http://www.brain-development.org. Data from 97 grey matter ROIs based on the AAL 

atlas (Tzurio-Mazoyer et al., 2002) were extracted.  These ROIs were also the same used when determining 

parameters for construction of the simulated data (see supplementary information). The linear outcome 

variable used was participants’ age, which has been shown to have a moderate-large effect size (Cole et 

al., 2017). This dataset was thus termed Imaginglarge. 

2.2.3. Evaluation of dataset size and number of features.  

http://fcon_1000.projects.nitrc.org/indi/pro/Berlin.html
http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
http://www.brain-development.org/
http://www.brain-development.org/
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For each analysis, simulated datasets (Simulatedsmall and Simulatedlarge to function as a comparison 

to the two real neuroimaging datasets with presumed differences in effect size) were generated with 2000 

observations and 1000 features, and subsets of these data were randomly sampled. Simulated data were 

sampled with the following sample sizes: 75, 200, 400, 750, 1000, and 2000. The size of the input feature 

set (regions of interest) was sampled using the following number of features: 75, 200, 400, 750, or 1000. 

Therefore, analyses were carried out across 30 dataset sizes. The maximum number of features and 

observations for simulated data was chosen to be comparable in dimensionality to the real neuroimaging 

data while also offering some insight into how an increase in sample size may affect findings. For 

Imagingsmall, random subsampling of the dataset (N=967 and 834 ROIs) at the following sample sizes was 

carried out: 75, 200, 400, 750, and 967. The features were subsampled at 75, 200, 400, 750 and 834 

features. Therefore, analyses were carried out at 25 dataset sizes. Imaginglarge (N=1360 and 97 ROIs) was 

subsampled only in the domain of sample size, using the following sample sizes: 75, 200, 400, 750, 1000, 

and 1360. This resulted in analyses being carried out at 6 dataset sizes. 

2.2.4. Regression machine performance.  

Analyses for each approach at each cell (i.e., each sample and feature set size) and for each data 

type were carried out 10 times, with 10 different CV assignments. To directly compare performance of 

different machines for each data type, the results of all analysis iterations for all algorithms within each 

cell were combined, and the quintiles of this distribution were calculated. Based on the median prediction 

accuracy of each algorithm within that cell we determined the quintile of an algorithm’s performance, 

thereby determining a ranking of algorithms on a scale of 1 to 5 for each cell. For a clearer representation 

of rank, those algorithms that had negative median prediction accuracy (i.e., zero results) were assigned 

rank zero within each cell. This approach was carried out in lieu of null hypothesis significance testing due 

to the large number of analyses carried out here: 546 results are displayed in Fig. 4. The examination of 

quintile rank shown across sample and feature set sizes is an alternative method of demonstrating 

differences in performance that takes into account the entire spectrum of prediction performance across 

all approaches and the volatility of rankings across dataset sizes. When considered in conjunction with a 

representation of median prediction performance of each approach the quintile ranking is an intuitive 

representation of performance comparison. As no significance levels were established using this method 

the observed effects will be described in terms of the quintile ranking and median model performance. 

2.2.5. Bagging and Feature Selection.  
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MR and EN are variants of generalized linear regression, which are relatively simple in comparison 

to GPR, KRR, and MKL. It is plausible that the performance of MR and EN could be improved through the 

addition of bagging and/or embedded feature selection. We also examined RF with feature selection (RF 

already incorporates bagging). A series of t-tests at each sample and feature set size were conducted to 

examine if embedded feature selection and/or bagging significantly changed results. 

3. Results 

3.1. Machine comparison 

Median out-of-sample model performance (i.e., correlation between prediction for the test set 

and truth) for all regression algorithms is shown in Figures 4 and 5. There was a clear effect of predictor 

effect sizes on prediction accuracy, with more accurate predictions for both SimulatedLarge, and 

ImagingLarge, relative to SimulatedSmall, and ImagingSmall, for all analysis methods. 

RF had the least amount of variation between data types, although it produced poorer predictions 

for datasets with large sample and feature set sizes relative to the other algorithms with all data types 

except ImagingLarge. The strongest variation in prediction accuracy between data types was observed for 

GPR, KRR, and MKL. These methods produced lower predictions than other approaches for ImagingLarge 

and failed to produce significant results at any sample and feature set size for SimulatedSmall and 

ImagingSmall. However, KRR and GPR produced predictions similar to other approaches for SimulatedLarge. 

The extent to which increases in sample and feature set size affected accuracy varied by analysis 

method and data type, but except for MR and MKL, the highest prediction accuracy was always achieved 

for datasets with the largest sample size and highest feature set sizes within each data type. For MR, the 

‘curse of dimensionality’ was observed for SimulatedLarge, SimulatedSmall, and ImagingSmall, such that models 

with large numbers of features relative to observation failed due to overfitting. This effect was also 

observed for feature sets up to 400 features with RF for Imagingsmall. For MKL, SimulatedLarge data indicated 

that prediction accuracy declined when the sample size exceeded 400 and more than 200 features were 

included. While some predictions at small sample sizes reached significance with SimulatedLarge and 

ImagingLarge, predictions were generally most successful if the sample size was at least N=200, and ideally 

more than N=400.  
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Figure 4. Median out-of-sample performance by sample size and analysis algorithm (SimulatedLarge, SimulatedSmall, ImagingLarge and ImagingSmall). 

RF: Random Forest; MR: Multiple Regression; EN: Elastic Net; MKL: Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process 

Regression.  Color bars show the cross-validated Pearson’s R value, with higher values (warmer colors) indicating better prediction accuracy. Note 

that value ranges differ between plots for different data types. 
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Figure 5. Quintile rank of prediction accuracy by sample size and analysis algorithm for SimulatedLarge, SimulatedSmall, ImagingSmall, and ImagingLarge. 

Shown ranks are the quintile into which the median prediction accuracy for each method within each data type and cell fell across the distribution 

of all analysis iteration for each data type and cell. RF: Random Forest; MR: Multiple Regression; EN: Elastic Net; MKL: Multiple Kernel Learning; 

KRR: Kernel Ridge Regression; GPR: Gaussian Process Regression. Color bars and plot coloring show the rank from zero to five, with higher values 

(warmer colors) indicating higher rank and therefore better prediction accuracy.
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3.1.1. Dataset: SimulatedSmall.  

RF had a high ranking across all cells with sample size (N) over 200. EN ranked highest for datasets 

with N≥750. For datasets with 400 or more features and N between 200 and 750, RF and EN  performed 

similarly. EN performed very poorly with small samples, particularly when the feature set was small. While 

MR ranked below RF and EN for almost all sample and feature set sizes, accuracy for ML for N=75 and up 

to 200 features was higher than for RF and EN. MKL, KRR, and GPR ranked below the other approaches in 

all cells, except for MKL at sample size equal to 400 and 75 features. 

3.1.2. Dataset: ImagingSmall.  

Quintile ranks for ImagingSmall were very similar to results for SimulatedSmall, lending plausibility to 

the simulated data findings. EN ranked highest N≥400, but performed poorly with small samples. Ranks 

for MKL, KRR, and GPR were zero for all dataset sizes. There was a trend toward higher performance of 

MR with smaller feature sets and higher performance of RF with larger feature sets. 

3.1.3. Dataset: SimulatedLarge.  

GPR showed the highest average ranking overall. In comparison to other methods, RF ranked 

lowest across cells. The ‘curse of dimensionality’ effect was evident in the rankings for MR, which 

performed broadly similar to KRR and EN when the sample size exceeded the feature set size, but showed 

distinctly poor performance (comparable to RF) when the number of features exceeded the sample size. 

EN, KRR, and GPR ranked very similarly for datasets with N≥400, but EN ranked lowest with small feature 

sets. KRR and MKL both ranked above other approaches for small datasets with more features than 

observations, and performed better with small sample sizes than EN. Both GPR and EN performed poorly 

for datasets with small samples and small feature sets. MKL performed very poorly for datasets with large 

samples, particularly when the number of features was also large.  

3.1.4. Dataset: ImagingLarge.  

Although only one feature set size was examined, data from ImagingLarge repeated the finding of 

low performance of MKL, KRR and GPR compared to the other approaches. Unlike with other data types, 

both RF and MR outperformed EN at larger sample sizes. Given the similarity in median performance at 

larger sample sizes for EN, MR, and RF, this was due to only very small differences in accuracy (see Figure 
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4). Furthermore, RF performed equal to or better than all other algorithms for datasets with N<1000, 

while MR performed best for datasets with N≥1000. 

 

3.2. Change in prediction accuracy from Feature Selection and bagging 

Changes in prediction accuracy from adding embedded feature selection, bagging, or both in 

combination were evaluated (see Figure 6). Mean performance of RF, MR and EN with feature selection 

and/or bagging (see Figure 7) and quintile ranks recalculated to include analyses with feature selection 

and/or bagging (see Figure 8) showed considerable effects of feature selection and bagging on algorithm 

performance. Ranks for the original six algorithms (see Figure 5) showed little change for ImagingSmall, 

SimulatedLarge and ImagingLarge. For SimulatedSmall ranks for RF, MR, and EN were reduced as MR and EN 

with bagging and/or feature selection ranked equal to or higher than the original approaches. Across data 

types, the rank of RF improved as RF with feature selection ranked very low for all data types except 

ImagingLarge, and MR with FS and bagging ranked very low for SimulatedLarge and ImagingLarge.  

3.2.1. Random Forest (RF) 

3.2.1.1. Feature selection.  

The addition of embedded feature selection did not improve prediction accuracy of RF for any 

dataset size or data type. Significant decreases in prediction accuracy were observed for SimulatedSmall 

when at least 200 features and N≥750 were used, and for ImagingSmall with 750 or more features and 

N≥400 and above. In the quintile ranking of all analysis approaches RF with feature selection ranked very 

highly for ImagingLarge, in the absence of any significant changes in prediction accuracy. In contrast, RF with 

feature selection ranked very low for all other data types. 
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3.2.2. Multiple Regression (MR) 

3.2.2.1. Feature selection.  

There were some small improvements in prediction accuracy for MR as a result of adding 

embedded feature selection with all data types. For SimulatedSmall and ImagingSmall improvements occurred 

with N≥750, and for SimulatedLarge and ImagingLarge improvements occurred with N≥75 with additional 

small improvements up to a sample size of 400 for ImagingLarge. For SimulatedSmall, MR with feature 

selection ranked higher than MR in the quintile ranking for almost all dataset sizes with more than 200 

observations and features, and for most datasets with 400 or more features with ImagingSmall. Examination 

of the relationship between feature set size and accuracy at each sample size revealed that these 

differences in accuracy were due to a reduction of the ‘curse of dimensionality’ effect observed with MR, 

evidenced by non-negative correlations between number of features and accuracy (see Figure 9). Quintile 

ranks for SimulatedSmall also showed that rank of MR with feature selection was higher than rank of MR 

for datasets with N=75 and more than 75 features. At larger sample sizes, rankings and observed 

correlations between feature set size and accuracy were very similar, indicating no effect of the feature 

selection step on performance. With ImagingLarge, ranking of MR with feature selection was higher than 

ranking for MR for N<400, and lower for larger samples.  

3.2.2.2. Bagging.  

When bagging was used, prediction accuracy for MR also showed improvements for all data types 

except ImagingSmall. For SimulatedSmall there were some improvements for sample sizes over 400 and 1000 

features and when N=400 and 75 features, and higher quintile ranks for MR with bagging compared to 

MR without bagging at almost all dataset sizes. For SimulatedLarge improvements occurred for datasets 

with sample sizes over 75 and at least 400 features when the number of features was equal to or larger 

than the sample size. These cells overlap to a large extent with the dataset sizes for which the ‘curse of 

dimensionality’ effect was observed (see Figure 7). Examination of the correlations between feature set 

size and accuracy revealed that bagging drastically increased this correlation for SimulatedLarge, resulting 

in an almost complete disappearance of the ‘curse of dimensionality’ effect when evaluating algorithm 

performance (see Figure 9). For ImagingLarge improvements as a result of bagging occurred at sample size 

equal to 75 and were thus similar to those seen for feature selection. 

3.2.2.3. Feature selection and bagging.  

When both feature selection and bagging were used performance of MR for SimulatedSmall showed 

some small improvements for datasets with N=400 to N=1000 and 200 or more features, and quintile rank 
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for MR with feature selection and bagging was higher than rank for MR at almost all dataset sizes with 

N>75. Performance of ImagingSmall was also improved at the largest dataset size (N=967 and 834 features), 

while performance was reduced at N=750 and 75 features. As with SimulatedSmall, quintile ranks for MR 

with feature selection and bagging were higher than ranks for MR for most cells with N>75, when 400 or 

more features were used. For SimulatedLarge performance was improved for N=400 and 400 to 750 

features, but performance decreased for datasets for which the sample size was larger than the number 

of features with 200 or more features and N>400. Similarly, performance for ImagingLarge was reduced for 

datasets with N>200, and quintile ranks for MR with feature selection and bagging were lower than those 

of MR in most cells for both SimulatedLarge and ImagingLarge, although ranks for datasets with N<400 were 

higher in some cells. For all data types the number of features showed a reduced correlation with 

prediction accuracy when MR was combined with both feature selection and bagging (see Figure 9). For 

SimulatedLarge and ImagingLarge this caused reduced accuracy compared to MR alone when sample sizes 

exceeded feature set sizes. 

3.2.3. Elastic Net (EN) 

3.2.3.1. Feature selection.  

For SimulatedSmall and ImagingSmall the addition of feature selection to EN resulted in significant 

reductions in accuracy for datasets with N>400 and 400 or more features. For SimulatedSmall there was a 

small improvement from feature selection at N=75 and 75 features.  While quintile ranks for both 

SimulatedSmall and ImagingSmall were reduced for EN with feature selection compared to EN for N>400, 

quintile ranks at small sample sizes were higher for EN with feature selection than for EN in some cells. 

Examination of the relationship between feature set size and accuracy revealed that the addition of 

feature selection reduced the positive correlation between number of features and accuracy, which 

accounts for reduced EN performance with large datasets when FS was used (see Figure 9). For 

SimulatedLarge there was a small improvement in accuracy from feature selection at N=1000 and 750 

features. Despite only a small significant change in prediction accuracy, quintile ranks indicated that EN 

with feature selection outperformed EN in almost all cells for SimulatedLarge, with EN with feature selection 

ranking highest among all analysis approaches for almost all cells with N≥400 and 200 or more features. 

While feature selection also reduced the correlation between feature set size and accuracy for 

SimulatedLarge, the correlation remained at r~.5 for N≥400, which is comparable to the correlations 

observed for SimulatedSmall and ImagingSmall without feature selection. No significant differences were 
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observed for ImagingLarge, and quintile ranks for EN with FS and EN were largely the same for this data 

type. 

3.2.3.2. Bagging.  

The addition of bagging to EN only resulted in a significant change in accuracy for ImagingSmall at 

N=967 and 400 features, where accuracy was reduced. While quintile ranks for EN with bagging were 

lower than ranks for EN in most cells for ImagingSmall, ranks for the other data types were similar between 

EN and EN with bagging. However, for both SimulatedSmall and ImagingSmall EN with bagging ranked highest 

and equal to EN alone for N≥750 and large feature set sizes (400 or more for SimulatedSmall and 834 for 

ImagingSmall). Examination of the relationship between feature set size and accuracy revealed only a very 

small difference in correlations for EN and for EN with bagging (see Figure 9). 

3.2.3.3. Feature selection and bagging.  

When both FS and bagging were used performance of EN with SimulatedSmall and ImagingSmall was 

again significantly reduced for datasets with N>400 and 400 or more features, as was the case for EN with 

feature selection only. Similarly, the correlation between feature set size and accuracy was also reduced 

for SimulatedSmall and ImagingSmall when both feature selection and bagging were used (see Figure 9). With 

SimulatedSmall quintile ranks for EN with bagging and feature selection were higher than for EN with just 

feature selection and lower than for EN alone. Ranks at large dataset sizes were higher for EN with only 

bagging than for EN with bagging and feature selection. For ImagingSmall quintile ranks of EN with bagging 

and feature selection were lower than ranks for EN only and EN with feature selection. However, ranks 

for EN with bagging and feature selection were higher than for EN with only bagging in most cells. As with 

both bagging and feature selection individually, the combination of both bagging and FS did not result in 

any significant changes in accuracy for ImagingLarge. However, the quintile ranking showed that for 

ImagingLarge EN with both bagging and feature selection ranked very poorly at the largest sample size 

(N=1000). While SimulatedLarge had shown a small improvement in accuracy for large datasets with feature 

selection, and no significant change for bagging, the addition of both bagging and feature selection 

resulted in a decrease in accuracy for the largest dataset sizes (i.e. N=2000 and 1000 features). The quintile 

ranking for SimulatedLarge indicated lower rank for EN with bagging and feature selection in almost all cells 

compared to EN with feature selection, lower performance in some cells than EN with bagging, and some 

improvement at small feature set sizes compared to EN alone. Unlike feature selection alone, feature 

selection in combination with bagging did not result in a reduction of the correlation between feature set 



MACHINE LEARNING NEUROIMAGING DATA 

 28 

size and accuracy for SimulatedLarge (see Figure 9), which accounts for the higher quintile rank of analyses 

with FS in many cells with N≥400. 

 

An additional analysis reporting the association of regularization and prediction accuracy is contained in 

Supplemental Information. 
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Figure 6. Significant improvement or decrease in median prediction accuracy (p<.005) from adding embedded Feature Selection (FS) and/or bagging 

to analyses with Random Forest (RF), Multiple Regression (MR), and Elastic Net (EN). Color bars and plot coloring show the difference in median 

correlation between prediction and truth between standard analyses for each algorithm and analyses with FS and/or bagging. Higher values, 

indicated by warmer colors, signify an improvement in prediction accuracy, while values below zero indicate a decrease in prediction accuracy.
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Figure 7. Mean out-of-sample performance by sample size and analysis algorithm for Random Forest (RF), Multiple regression (MR), and Elastic 

Net (EN) with and without bagging and embedded feature selection (FS). Color bars show the cross-validated Pearson’s R value, with higher values 

(warmer colors) indicating better prediction accuracy. 
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Figure 8. Quintile rank of prediction accuracy with and without embedded feature selection (FS) and/or bagging by sample size and analysis 

algorithm for SimulatedSmall, ImagingSmall, SimulatedLarge, and ImagingLarge. Shown ranks are the quintile into which the median prediction accuracy 

for each method within each data type and cell fell across the distribution of all analysis iteration for each data type and cell. RF: Random Forest; 

MR: Multiple Regression; EN: Elastic Net; MKL: Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process Regression. Color 

bars and plot coloring show the rank from zero to five, with higher values (warmer colors) indicating higher rank and therefore better prediction 

accuracy. 
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Figure 9. Correlation between feature set size and prediction accuracy for all analysis approaches and data types. RF: Random Forest; MR: Multiple 

Regression; EN: Elastic Net; MKL: Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process Regression; FS: Feature Selection.
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4. Discussion 

Analytical tools developed for data science have become frequently used in neuroimaging (Woo 

et al., 2017), but none of these tools were specifically developed for neuroimaging data. With the small 

samples, large feature sets, and low signal-to-noise that are characteristic of neuroimaging data, 

prediction models built using neuroimaging data are at a high risk of overfitting. In this paper, the merit 

of six different regression approaches for prediction analysis was empirically evaluated and compared 

using simulated and real neuroimaging data for the first time. Results showed that GPR, MKK, and KRR 

could produce good predictions, but failed when effect sizes were small regardless of sample size. The 

Elastic Net on the other hand emerged as the most flexible and reliable regression machine. The Elastic 

Net created the most accurate prediction models independent of absolute predictor effect sizes, and 

across many sample and feature set sizes. Predictions were always improved when sample size was 

increased, but across all analyses a minimum sample size of about 400 emerged as necessary to achieve 

reliable results. At smaller sample sizes and for datasets with weak effect sizes modest improvements in 

accuracy could be made using an embedded feature selection method. Another approach designed to 

increase model performance – bootstrap aggregation – could counteract the decline in standard Multiple 

Regression model accuracy with more predictor variables than observations. However, given adequate 

dataset sizes and using the Elastic Net, neither feature selection nor bootstrap aggregation improved 

findings significantly, and indeed resulted in substantially increased computational time for all analyses 

and reduced accuracy for some models. A visual summary of findings with regard to the best analysis 

method based on sample size, number of features, and effect size is given in Figure 10. 
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Figure 10. Graphical representation of best-performing analysis methods by sample size, feature set size, 

and expected effect size. 

The central observation of this study was that different types of regression approaches provide 

widely different results, and that these results are differently affected by sample size, number of 

predictors, and the ratio of signal to noise in the data. Previous meta-analyses by Kambeitz and colleagues 

(2015, 2016) have shown that not only the outcome to be predicted, but also the type of neuroimaging 

data that is used has a strong effect on the maximum performance of a model. Findings in the present 

study confirmed that when using multivariate regression methods, the expected size of the effect and 

effect sizes for individual predictor variables are the most important criteria for selection not only of 

minimum sample size, but also selection of the analysis approach. However, across simulated and real 

neuroimaging data of varying effect sizes the Elastic Net had the highest median prediction accuracy for 

datasets with 400 or more features and observations. For smaller feature sets, variations of Multiple 

Regression resulted in better model fit.  

When both the sample and feature set size were small, the MATLAB implementation of random 

forest (Treebagger) also showed some promise. A key difference between Random Forest and many other 

regression methods is that the contribution of individual predictors is not easily, or at all, determinable 

from a completed model. While it has been debated in the literature whether the main goal of 



MACHINE LEARNING NEUROIMAGING DATA 

 35 

neuroimaging prediction should be predicting an outcome as accurately as possible, or identifying when 

and where data contain information about an outcome (Paulus, 2015; Pine & Leibenluft, 2015), the 

readability of neuroimaging prediction models is an important aspect of model development. The ability 

to scrutinize the contribution of individual neuroimaging predictors allows researchers to verify the 

neurophysiological plausibility of the model, while also enabling future research to consider which 

variables are strong or poor predictors of an outcome in the development of further experiments, studies, 

and prediction models (Woo et al., 2017; Jollans & Whelan, 2018). Although some methods make it 

possible to gain insight into the contribution of individual predictors in random forest models (e.g., 

Palczewska et al., 2014), these are computationally expensive. Random forest should, in theory, 

outperform the Elastic Net if non-linear relationships are present in the data. However, the results from 

the real imaging data suggest that non-linearities are either not present in the data or that the random 

forest did not detect them, at least in our implementation using TreeBagger.   

The Elastic Net, which had the most consistent performance across effect sizes and dataset sizes, 

was able to improve prediction accuracy by adding more input features. That is, given smaller sample 

sizes, inclusion of a larger feature set is thus one approach to improve model performance (assuming the 

extra data contains some signal). Crucially, preselection of variables for inclusion in the model did not 

improve performance, and indeed resulted in lower model accuracy in some cases. Therefore, we suggest 

that neuroimaging researchers do not preselect regions of interest or contrasts of interest before 

implementing Elastic Net models. This will allow researchers to conduct analyses that include variables 

not previously linked to the outcome of interest, without being unduly penalized by  the inclusion of more 

exploratory variables. This is important because most neuroimaging literature to date reports only 

univariate and frequentist findings that may not translate to predictive utility (Lo et al., 2015). An 

important caveat is that our findings may only apply to ROI data, and may only hold when sample sizes 

exceed a certain minimum threshold as determined by the smallest sample sizes examined in this study 

(i.e. N=75-200). Voxelwise analyses and analyses with very small sample sizes are likely to benefit from 

some additional dimension reduction, as we showed in our findings regarding accuracy for very small 

samples using the embedded feature selection approach. 

There was evidence for a beneficial effect of embedded feature selection at small sample sizes for 

both the Elastic Net and multiple regression. Through feature selection, the association between the 

number of features and model performance tended to shift toward zero, reducing the ‘curse of 

dimensionality’ effect for multiple regression, but also counteracting the positive relationship between 
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feature set size and model performance at large sample sizes for the Elastic Net. For the Elastic Net the 

feature selection step greatly reduced the need for regularization, as seen by very small regularization 

weights for analyses after feature selection. Any significant improvements in model performance because 

of embedded feature selection were not consistent or strong enough to recommend use of this approach, 

particularly considering the computational expense. Time needed to run Elastic Net analyses with N=400 

and 1000 features was approximately 18 seconds (see Figure 11) for the standard Elastic Net (r=.25) 

compared to 225 minutes for the Elastic Net with the embedded feature selection approach (r=.15). While 

the feature selection method utilized here did not result in consistent improvements in model 

performance, innovations in dimension reduction for neuroimaging studies are forthcoming (e.g. 

Koutsouleris et al. 2018), and the possible benefit of these new tools should not be discounted based on 

the results obtained using one specific method in this paper. 

 

Figure 11. Example computational time and prediction accuracy for a sample simulated dataset from 

SimulatedSmall with N=400 and 1000 features. 

In contrast to embedded feature selection, there was strong evidence for the utility of bootstrap 

aggregation to improve prediction accuracy with Multiple Regression. This approach strongly 

counteracted the ‘curse of dimensionality’ effect for multiple regression. Indeed, for half of all cells with 

fewer than 400 features or a sample size of N<400 Multiple Regression paired with 25-fold bootstrap 

aggregation performed in the highest quintile for the simulated and real neuroimaging data with weak 

effect sizes. There was no significant effect of bootstrap aggregation on performance of the Elastic Net, 

and quintile ranks for analyses with and without this method were largely similar. Given the relatively 
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small increase in time required for computations when bootstrap aggregation was used (see Figure S2) it 

may then be worthwhile including this method with a view to increasing model stability.  

There are some important limitations to the generalizability of findings in this study. While there 

were strong commonalities across results for the real neuroimaging dataset examined here and results 

achieved using data simulations, there was some indication that not all characteristics of real 

neuroimaging data were sufficiently accounted for in the simulations. In particular, there was higher 

accuracy for analyses with Random Forest for the real compared to the simulated datasets. Further 

examination of Random Forest and other regression methods such as Support Vector Machines for 

neuroimaging data are therefore warranted. Furthermore, only ROI data rather than voxelwise analyses 

were considered in this study. While this decision was based on the intention of creating models that are 

easily interpretable, findings also do not necessarily translate to models with a strongly increased feature 

set size, and the characteristics of voxelwise as compared to ROI data are likely quite different in terms of 

the between-feature correlations and predictor strengths. Finally, based on previous findings that non-

brain variables are much better predictors of phenotypic outcomes than neuroimaging data (Whelan et 

al., 2014), identifying the best methods to integrate imaging and non-imaging data in prediction analyses 

is an important step. 

Conclusion 

A number of recommendations for future machine learning studies using neuroimaging data can 

be made based on these findings. Datasets with at least 400 observations have the highest likelihood of 

uncovering meaningful findings. When at least 400 observations and 400 or more predictor variables are 

included in the analysis, regularized regression via the Elastic Net was shown to be the best analysis 

approach for ROI data. When the sample or feature set size is smaller, standard Multiple Regression 

supported by bootstrap aggregation showed the best performance in this study. Furthermore, when the 

analysis framework was chosen appropriately - based on number of observations and presumed effect 

size - increasing the number of ROI variables for inclusion in a model improved results, eliminating the 

need for the researcher to preselect variables for inclusion.  

Here, we have shown that the choice of analysis approach for linear regression analyses has a 

large impact on the accuracy of the resulting regression model. The sample size and number of predictors 

are important factors that determine the analysis approach that will have the greatest success in 

extracting meaningful information from a neuroimaging dataset. Data-driven machine learning 
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approaches have great potential for increasing reproducibility in neuroimaging. Understanding the 

boundaries of what machine learning can achieve with neuroimaging data will help the field make 

informed choices.  
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