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a b s t r a c t

Electroencephalogram (EEG) data are typically contaminated with artifacts (e.g., by eye movements). The
effect of artifacts can be attenuated by deleting data with amplitudes over a certain value, for example.
Independent component analysis (ICA) separates EEG data into neural activity and artifact; once iden-
tified, artifactual components can be deleted from the data. Often, artifact rejection algorithms require
supervision (e.g., training using canonical artifacts). Many artifact rejection methods are time consuming
when applied to high-density EEG data. We describe FASTER (Fully Automated Statistical Thresholding
for EEG artifact Rejection). Parameters were estimated for various aspects of data (e.g., channel variance)
in both the EEG time series and in the independent components of the EEG: outliers were detected and
removed. FASTER was tested on both simulated EEG (n = 47) and real EEG (n = 47) data on 128-, 64-, and
32-scalp electrode arrays. FASTER was compared to supervised artifact detection by experts and to a vari-
ndependent component analysis
igital signal processing

ant of the Statistical Control for Dense Arrays of Sensors (SCADS) method. FASTER had >90% sensitivity
and specificity for detection of contaminated channels, eye movement and EMG artifacts, linear trends
and white noise. FASTER generally had >60% sensitivity and specificity for detection of contaminated
epochs, vs. 0.15% for SCADS. FASTER also aggregates the ERP across subject datasets, and detects outlier
datasets. The variance in the ERP baseline, a measure of noise, was significantly lower for FASTER than

CADS
either the supervised or S
the supervised approach.

. Introduction

The event-related potential (ERP) is computed by aggregating
cross time-locked electroencephalograms (EEG) epochs. Artifacts

such as eye and muscle movements (measured by electro-
culograms (EOG) and electromyograms (EMG), respectively), and
lectrode displacement – can be orders of magnitude greater than
he ERP, thereby greatly distorting the signal. For example, EEG sig-
als are in the order of tens of �V whereas EOG and EMG signals
re in the order of hundreds of �V. In addition to eye and muscle

ovement artifacts, poor scalp contact for a particular electrode
ill produce consistently bad data for the duration of the record-

ng. Other artifacts include spurious electrical activity picked up by
he EEG amplifier, and current drift.
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eBiomed: eHealthCare based on Biomedical Signal Processing and ICT for Integrated
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methods. ERP amplitude did not differ significantly between FASTER and
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One simple and computationally inexpensive approach to eye
and muscle movement artifact detection and rejection involves
deleting portions of the data with artifacts (e.g., EOG data with
amplitudes ±75 �V). However, this can potentially lead to a large
loss of data, consequently reducing the quality of the ERP. Elec-
trodes with consistently poor signal quality are typically removed
and then recreated using interpolation from the remaining elec-
trodes, which effectively reduces the spatial resolution of the EEG.
Therefore, several methods of removing eye and muscle movement
artifacts while retaining EEG data have been proposed (Croft and
Barry, 2000; Moretti et al., 2003; Schlögl et al., 2007).

There are extant methods for detection of artifacts in high-
density EEG data, many of which are applicable only to specific
artifact types (e.g., eye movement artifacts). Some methods for
artifact detection have a broader scope, however. For exam-
ple, the Statistical Control of Artifacts in Dense Arrays Studies
(SCADS) method, fully described in Junghöfer et al. (2000), used
thresholding methods to detect artifacts. In this approach, several
editing matrices, containing parameters such as standard devia-
tion (SD), maximum gradient, and maximum amplitude value, are

constructed for each channel within each epoch. Thresholds are
calculated for each parameter across whole epochs, whole chan-
nels, and single channels in single epochs using a non-parametric
formula to measure the spread of the distribution. Whole chan-
nels, whole epochs, or single channels within single epochs whose

dx.doi.org/10.1016/j.jneumeth.2010.07.015
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:Robert.whelan@tcd.ie
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ig. 1. A section of a dataset with simulated artifacts added (top) and after remov
ighlighted. These have been removed in the bottom panel. A number of noise-con

ower panel. This represents a 100% sensitivity (i.e. all artifacts removed) and 100
hown.

arameters exceeded the thresholds are removed (epochs) or inter-
olated (channels).

Another approach to artifact detection involves the use of
ndependent component analysis (ICA), which is widely available
hrough the EEGLAB software suite (Delorme and Makeig, 2004).
CA is a computational method that separates time series data into
tatistically independent component (IC) waveforms. ICA outputs
matrix that transforms EEG data to IC data, and its inverse matrix

o transform IC data back to EEG data. These matrices give informa-
ion about an IC’s spatial properties, and the data gives information
bout the IC’s temporal activity. Data recorded from scalp elec-
rodes can be considered summations of EEG data and artifact,
hich are independent of each other: ICA is therefore potentially
useful methodology to separate artifact from EEG signal (Jung et
l., 2000; Vorobyov and Cichocki, 2002). There is, however, a need
o classify the resulting components as either artifactual or neural
Bian et al., 2006). If detected, artifactual ICs can then be subtracted
rom the recorded data and the remaining data can be remixed.
everal methods for detecting and rejecting artifacts based on ICA
ave been described previously in the literature. Some of these
pproaches can be limited by the requirement for the detection pro-
ess to be trained from predefined artifacts (i.e. supervised), which

re not always available, or may not be generalizable (Delorme et
l., 2007; Jung et al., 1998; Schlögl et al., 2007; Yandong et al., 2006).
or example, eye movement artifacts vary in shape, amplitude
nd length between subjects. The training procedure is generally
arried out manually from visually identified artifacts, and conse-
h FASTER (bottom). Two EOG artifacts and one EMG portion added to the data are
ated channels are also present in the top panel, which have been corrected in the

sitivity (i.e. no uncontaminated channels or epochs removed) in the three epochs

quently full unsupervised automation is not possible with these
methods.

In short, methods have been developed for removing various
types of artifacts from EEG. However, as many are application
dependant, or focused on a single type of artifact, it can be difficult
to choose which approach(es) to take. Furthermore, all approaches
involve at least some degree of supervision for classification of arti-
facts. Given the trend towards ever-denser EEG arrays, such artifact
rejection methods are time consuming. We describe here a method
called Fully Automated Statistical Thresholding for EEG artifact
Rejection (FASTER) in which raw data are imported, bad channels
removed, epochs extracted, artifacts detected and removed using
ICA, subjects’ data aggregated, and data sets from subjects with
unacceptably artifact-contaminated detected data are removed.
This fully automated, unsupervised approach – with raw EEG data
as the input and epoched, artifact-attenuated data as the output –
would therefore be of use to the many researchers who collect EEG
data.

With any new method of processing EEG data, and in partic-
ular for a fully automated, unsupervised method, it is essential to
quantify the improvement of signal-to-noise and the rate of artifact
detection against other established methods. In addition, meth-

ods suitable for dense EEG arrays may not be applicable to lower
density arrays, and this applicability needs to be tested also. For
example, the ability to detect outliers is improved with increasing
sample size and the number of independent components that can
be estimated robustly is a function of the number of data points.
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herefore, we tested FASTER in a number of scenarios. We com-
ared the FASTER and SCADS methods on 128-, 64-, and 32-scalp
lectrode arrays simulated EEG data with simulated artifacts. The
dvantage of testing an artifact rejection method on simulated data
s that the sensitivity and specificity of the detection algorithms can
e quantified. While simulated data are useful, however, they often
ontain artifacts with known properties (e.g., EOG amplitude of at
east 80 �V). In contrast, real EEG data contain a variety of arti-
acts whose properties are unknown. Therefore, we compared real
28-channel EEG data from 47 subjects analyzed using the FASTER
ethod, artifacts detected visually by trained individuals, and with

CADS. FASTER was also compared with SCADS on 64- and 32-scalp
lectrode array subsets of the real data to test the effect of using
ewer data points.

. Methods for EEG data collection/simulation

.1. Simulated data

Forty-seven sets of simulated data were created. These
onsisted of 200 epochs of data simulated from P3 dipoles
sing the BESA Dipole Simulator program (which is found
t http://www.besa.de/updates/tools/), which then had artifacts
dded at random. The procedure for creating artifacts was derived
rom Delorme et al. (2007). In order to create contaminated chan-
els, white noise was added to a random number of channels (range
–5). The white noise was of RMS amplitude randomly selected
o be 1–10 times that of the channel itself. A random number of
he 200 epochs (range 0–15) had a high-amplitude (30–150 �V)
ow frequency (1–3 Hz) wave added to all channels to simulate an
lectrode-shift artifact. The position of all artifacts was recorded
nd the data were then processed. The pre-artifact data and post-
rocessing data were compared for the duration of each artifact to
ssess the degree of artifact removal. Fig. 1 displays an example of
ata pre- and post-artifact removal.

.2. Real data

Forty-seven datasets from healthy controls from a visual odd-
all paradigm were analyzed (mean age = 37.6 years, 28 males). ERP
ata were recorded in a soundproofed room using the ActiveTwo
iosemiTM electrode system from 134 electrodes (128-scalp elec-
rodes) organized according the 10-5 system (Oostenveld and
raamstra, 2001) digitized at 512 Hz. The vertical and horizontal
lectro-oculograms were recorded bilaterally from approximately
cm below the eye and from the outer canthi, respectively. An
dditional two electrodes were placed on the mastoids bilaterally.

Subjects observed blue circles, separated by an inter-stimulus
nterval of 2 s, presented for 205 trials in a pseudorandom order.
requent non-target (80%) and infrequent target (20%) circles were
cm or 4 cm in diameter, respectively. Subjects were instructed

o press a button as quickly as possible following a target stimu-
us. This type of oddball task typically evokes a positive deflection
n the ERP with a latency of approximately 300 ms following the
arget stimulus. This is called the P3/P300 component. These data
ere acquired with the understanding and written consent of each

ubject, the approval of St. Vincent’s University Hospital Ethics
ommittee, and in compliance with national legislation and the
ode of Ethical Principles for Medical Research Involving Human
ubjects of the World Medical Association (Declaration of Helsinki).
All data were recorded from a BiosemiTM ActiveTwo 128-
hannel EEG system at 512 Hz. The BiosemiTM system replaces
he ground electrodes used in conventional systems with two
eparate electrodes: Common Mode Sense active electrode and
riven Right Leg passive electrode. These two electrodes form
e Methods 192 (2010) 152–162

a feedback loop, which drives the average potential of the sub-
ject (the Common Mode voltage) as close as possible to the
analogue-to-digital reference voltage in the AD-box (the analogue-
to-digital reference can be considered the virtual ground of
the amplifier). For a detailed description of the referencing and
grounding conventions used by the BiosemiTM active electrode sys-
tem, the interested reader is referred to the following website:
http://www.biosemi.com/faq/cms&drl.htm.

3. Methods for artifact detection and removal

3.1. Method overview

We describe here the general approach to artifact detection
and removal, in order to give the reader an overview of the pro-
cedure. The details of each particular method are described in
subsequent sections. The real datasets were converted to EEGLAB
format and then referenced to Fz – this was chosen as it was
common to the 128-, 64- and 32-channel datasets. The EEG data
were filtered offline using equiripple filters between 1 Hz and 95 Hz
with a notch filter at 50 Hz (bandwidth 6 Hz) to remove mains
interference. Channels were analyzed for artifacts (using either
FASTER, SCADS, or supervised rejection), and any contaminated
channels were interpolated. Data were then epoched from −500 ms
to 1500 ms, and baseline corrected from −200 ms to 0 ms. Epochs
were analyzed for artifacts (using either FASTER, SCADS, or super-
vised rejection), and any contaminated epochs were removed from
the dataset. The data were referenced to the average of all scalp
electrodes.

For FASTER and supervised processing, ICA was then performed
on the dataset, and the resulting ICs were analyzed for artifacts.
Contaminated ICs were subtracted from the dataset. After this,
for FASTER and SCADS processing, each channel per epoch was
analyzed for artifacts, and if found to be contaminated, was inter-
polated. Finally, for all methods, the ERP of each dataset was taken,
baseline corrected from −200 ms to 0 ms (as absolute values of the
EEG may have changed following IC removal), and concatenated to
make a grand average dataset. For FASTER and supervised methods,
each subject’s ERP was analyzed for artifacts, and if found to be of
poor quality, removed from the average.

3.2. FASTER

Data artifacts were detected and corrected in five aspects of the
EEG data: channels, epochs, ICs, single-channel single-epochs, and
aggregated data (i.e. across subjects). Fig. 2 displays a flowchart
showing each step of the FASTER method. For each aspect, statistical
parameters of the data were calculated. The metric that defined
contaminated data was a Z-score of ±3 for that parameter (this is a
definition of an outlier). For example, a channel whose variance had
a Z-score of 3 would be deemed to be contaminated. Various other
methods for thresholding were considered (and rejected), and are
discussed in the supplemental methods section.

For the mathematical descriptions of the properties, the follow-
ing conventions apply:

n = 1, 2, . . ., N indicates a specific channel (N is the number of
channels in the dataset)

e = 1, 2, . . ., E indicates a specific epoch (E is the number of epochs
in the dataset)

c = 1, 2, . . ., C indicates a specific IC (C is the number of components

in the dataset)

xn indicates the data in channel n
xne indicates the data in channel n within epoch e
xct indicates the temporal data in component c
xcs indicates the spatial data in component c

http://www.besa.de/updates/tools/
http://www.biosemi.com/faq/cms%26drl.htm
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Fig. 2. A flowchart detailing each step of the FASTER method.
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2x indicates the variance of data
x〉 indicates taking the mean of data
x〉N indicates taking the mean of data across channels
x〉E indicates taking the mean of data across epochs
OG1,2,3,4 the EOG electrodes
(x) power spectrum (calculated using MATLAB’s pwelch func-

tion)

.2.1. Channel artifacts
An electrode or subset of electrodes in an EEG dataset may move

uring an EEG session, resulting in bad contact with the scalp and
herefore a poor quality signal. More rarely, electrodes may also
ave mechanical faults, for example frayed wiring, which can par-
ially or wholly degrade the signal received. Such electrodes can
roduce erratic signals. To classify channels as artifactual, three
arameters of each channel were calculated:

3.2.1.1. The first parameter was the mean of the channel’s cor-
elation coefficients with other channels. Most channels, especially
n a high-density system, should correlate highly with neighboring
hannels. Therefore, a channel with contaminated data will likely
ave a low correlation with other channels.

Parameter 1:

∑N

m=1
rxn,xm

N , the mean correlation coefficient of chan-
nel n, where rxn,xm is the Pearson correlation coefficient between
channels n and m

3.2.1.2. Alternatively, a contaminated channel may correlate
quite well with other channels, but have a higher variance (due to
additive noise) and therefore the second parameter is the variance
of the channel.
Parameter 2: S2

xn
, the variance of channel n

3.2.1.3. The third parameter was the Hurst exponent. The Hurst
exponent is a measure of long-range dependence within a signal.
Human phenomena such as EEG have values of H ≈ 0.7, and signals
that deviate from this number are more likely to be artifacts (for
more details see Appendix A).
Parameter 3: Hxn , the Hurst exponent of channel n

The above parameters were corrected for reference offset using
the method described in (Junghöfer et al., 2000). Channels iden-
tified as contaminated were removed and data at this electrode
were reconstructed by interpolating from neighboring electrodes
using the EEGLAB 7 spherical spline interpolation function.

.2.2. Epoch artifacts
An epoch in an EEG dataset may at times be contaminated

ith all-channel noise, typically caused by subject movement, and
ubsequent physical movement of the electrodes. To detect such
pochs, 3 parameters were computed for each channel within the
poch.

3.2.2.1. The movement of electrodes on the scalp results in
change in impedance between the scalp and the electrodes,
hich consequently affects the electrode voltage offsets. This off-

et change contaminates epochs, and can be identified by its high
mplitude. To detect this contamination, the first parameter com-
uted was the amplitude range of the epoch.

Parameter 4:
〈

max(xne ) − min(xne )
〉

N
, the amplitude range in

epoch e
3.2.2.2. Shifting electrodes may also produce less extreme move-

ments that may not have sufficient amplitude range to exceed the

threshold of a Z-score equal to 3, but still contaminate an epoch.
This type of artifact may be reflected in a high deviation of that
epoch’s average value from the average values across all chan-
nels. The second parameter computed was the deviation from each
channel’s average value.
e Methods 192 (2010) 152–162

Parameter 5:
〈〈

xne

〉
− 〈xn〉

〉
N

, the deviation from the channel aver-
age in epoch e

3.2.2.3. Subject movement also produces EMG interference. A
high variance will reflect such activity, and so the third parameter
calculated was the variance.
Parameter 6:

〈
S2

xne

〉
N

, the variance in epoch e

3.2.3. IC artifacts
The Infomax (Bell and Sejnowski, 1995) algorithm was employed

to perform the ICA decomposition. The number of data points
needed to find C stable components from ICA is typically kC2

for each data channel, where k is a multiplier. The k value was
set to 25, as recommended in (Onton et al., 2006). For exam-
ple, our real data were of length 512 × 205 = 104960 points, given
128-scalp channels, 4 EOG channels and 2 mastoid channels, the
maximum possible number of ICs would be 134. However, this
would not have met the k = 25 criterion, which would necessi-
tate 25 × (134)2 = 448900 data points. Therefore, the value of C was
reduced to Cpca by performing Principal Component Analysis (PCA)
on the EEG data and keeping only the first Cpca principal compo-
nents (Shlens, 2005). Cpca was calculated as:

Cpca = floor

(√
L

k

)
,

where L is the length of the EEG dataset (in samples), and floor
indicates rounding down to the nearest integer.

This reduces the rank of the data and so a smaller number of ICs
are computed. Interpolation of channels also reduces the rank of
the data, and so Cpca was corrected to account for this:

Cpca = min

(
floor

(√
L

k

)
, N − Ninterpolated

)
,

where N was the original number of channels and Ninterpolated was
the number of channels interpolated in the channel interpolation
step.

ICA often produces ICs which consist entirely of artifactual data.
These can then be subtracted from the dataset, leaving EEG data
without the artifact. To classify ICs, five parameters were computed.

3.2.3.1. To identify artifacts caused by eye blinks (vertical EOG,
VEOG) or saccades (horizontal EOG, HEOG), the correlation coeffi-
cients of each IC time series with the four recorded EOG (two VEOG
and two HEOG) data channels was calculated, and the maximum
absolute value was taken as the first parameter. The absolute was
taken to account for possible differences in polarity between the
EOG channel data and the IC time series.

Parameter 7: max(
∣∣∣rxct ,xEOG1,2,3,4

∣∣∣), the maximum of the absolute

correlation coefficient between component c time-course and EOG
channels

3.2.3.2. Another common type of artifact singled out by ICA is
a short, high-amplitude, single-electrode offset, often termed a
“pop-off”. An IC consisting of a pop-off has spatial data which
shows activity in a single-channel and none otherwise. This is
reflected in a high kurtosis value in the spatial data, as kurtosis
measures the peakedness of data. The second parameter computed
was the kurtosis of the spatial data.

Parameter 8: �4
�2

2
− 3, where �i gives the ith central moment of
the spatial data, is the equation for kurtosis of the spatial informa-
tion in component c

3.2.3.3. There is typically white noise in the acquired data due
to hardware properties. White noise has a close-to-flat frequency
power spectrum, as opposed to EEG components which have a 1/f
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power spectrum distribution. Residual white noise may remain
after filtering, albeit with a very low contribution. Independent
components consisting of white noise were identified by calculat-
ing the slope of the spectrum over the low-pass filter band as the
third parameter.

Parameter 9:
〈

dF(xct )
df

〉∣∣∣ fLP1 < f < fLP2, the mean slope of the

power spectrum of the component c time-course, between the
band edges of the low-pass filter band

3.2.3.4. The fourth parameter estimated was the Hurst exponent.
Parameter 10: Hxct

, the Hurst exponent of component c time-
course

3.2.3.5. The fifth parameter was the median gradient value,
which is above threshold if the IC contains considerable high-
frequency content, was also calculated for each IC time series.

Parameter 11: median
(

d(xct )
dt

)
, the median slope of the component

c time-course

.2.4. Single-channel, single-epoch artifacts
Following the previous three steps, a high percentage of artifacts

ill have been removed. Some small transient artifacts may remain
n single channels, within single epochs – for example, short bursts
f white noise due to transient electrical faults, or electrodes that
ost contact during a recording and were not sufficiently noisy to be
etected as bad channels. Such artifacts were corrected by interpo-

ating single channels within single epochs, using spherical splines.
o detect the artifacts, four parameters were computed for each
hannel within each epoch.

3.2.4.1. The first parameter was the variance, to detect single
hannels in single epochs with additive noise.

Parameter 12: S2
xne

, the variance of channel n in epoch e
3.2.4.2. The second was the median gradient, to detect other

high-frequency activity.

Parameter 13: median
(

d(xne )
dt

)
, the median slope of the channel n

in epoch e
3.2.4.3. The third was the amplitude range of the channel, to

detect pop-offs.
Parameter 14: max(xne ) − min(xne ), the amplitude range of chan-
nel n in epoch e

3.2.4.4. Fourth, in order to detect electrical drift, the deviation
of the mean amplitude in the epoch for each channel from the
whole-channel mean amplitude was calculated.
Parameter 15:

〈
xne

〉
− 〈xn〉, the deviation from the channel average

of channel n in epoch e

.2.5. Contaminated datasets
After each file had been processed, a grand average dataset was

reated (i.e. all subjects’ data were aggregated) so that each epoch
as the ERP of a processed file. In a typical EEG study there are often

ubjects whose data are contaminated by artifacts to the extent
hat their data are not a true reflection of neural processes, and
herefore distort the grand average data. These subjects’ data are
ften removed entirely from the grand average. In order to identify
hese subjects, the epoch artifact detection method was repeated
or the grand average:

3.2.5.1. Parameter 16:
〈

max(xne ) − min(xne )
〉

N
, the amplitude

ange in epoch e.
3.2.5.2. Parameter 17:

〈
S2

xne

〉
N

, the variance in epoch e.〈〈 〉 〉

3.2.5.3. Parameter 18: xne − 〈xn〉

N
, the deviation from the

hannel average in epoch e.
An additional parameter – the maximum absolute value of the

OG channels in the ERP – was computed for each epoch in order
o determine whether eye movement artifacts remained.
e Methods 192 (2010) 152–162 157

3.2.5.4. Property 19: max(xEOG1,2,3,4e
), the maximum value in the

EOG channels in epoch e.
Thresholds were calculated for each parameter, and any epoch

(i.e. subject) that surpassed that threshold was considered contam-
inated and removed from the grand average file.

3.3. SCADS

The SCADS method was implemented following the description
in (Junghöfer et al., 2000): data were converted to a single refer-
ence (Fz, as this was the reference chosen for data using the FASTER
method). Editing matrices were composed, consisting of the maxi-
mum, standard deviation, and maximum gradient of each channel
in each epoch. Limits were computed using the non-parametric
formula to detect contaminated channels and channels in epochs.
Contaminated channels were interpolated using spherical splines.
Data were converted to average reference. Editing matrices were
recomposed. At this stage, Junghöfer recommends visual identifi-
cation of remaining artifacts in channels within epochs. To make
this a fully automated process and thus a valid comparison with
the FASTER method, this visual identification was substituted with
the 3 Z-score threshold used by the FASTER method. Epochs with 10
or more contaminated channels were deemed bad, as suggested by
Junghöfer. They were removed from the dataset. Remaining con-
taminated channels in epochs were interpolated using spherical
splines.

3.4. Supervised, expert artifact identification

Contaminated epochs, contaminated channels and artifactual
ICs were identified by seven trained individuals, all of whom
had extensive EEG processing experience and who were currently
engaged in high-density EEG research. The raw data were filtered
and epoched, and the participants were then instructed to list the
epochs and channels they believed were artifact-contaminated.
This was done by visual identification, using EEGLAB software,
which allows users to scroll through EEG data. They were also
instructed to list any datasets they believed to be contaminated
to the extent that artifact removal would not improve the quality
of the data. Such datasets were not used to calculate the average. In
the remaining datasets, the listed artifacts were removed, and ICA
was performed on the data. Participants were then instructed to
list any ICs which they believe were artifact-contaminated, which
were subtracted from the data. Each participant analyzed between
4 and 9 datasets each.

4. Artifact removal quantification

The simulated data results were calculated from 47 files. We
attempted to quantify the performance of each method by using
metrics of sensitivity and specificity. The first, sensitivity, was the
percentage of true artifacts that were detected. For example, if there
were 100 artifact-contaminated epochs in a dataset, and 50 of these
contaminated epochs were detected then the sensitivity would
be 50%. The second, specificity, is the percentage of artifact-free
EEG data that was wrongly classified as contaminated by arti-
facts. For example, if there were 100 artifact-free epochs and 5 of
these were wrongly classified as contaminated then the specificity
would be 95%. The formulae for artifact detection were calculated
using the following formulae: sensitivity = detected artifacts/total
contaminated data; specificity = 1 − (detected false artifacts/total

uncontaminated data). Fig. 3 displays an example of the effect of
different levels of sensitivity.

In order to quantify the performance of the artifact removal
method on real data, a metric for measuring artifact contribution to
EEG was defined as the variance in the 500 ms baseline prior to the
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ig. 3. The ERPs calculated from simulated data with a different amount of artifacts
f all artifact types (see text for details). (C) The ERP at 50% sensitivity. (D) The ERP

timulus presentation (Handy et al., 2003). This variance should be
ower in datasets with fewer artifacts. This metric has the advantage
f making no assumptions about the signal content. The disadvan-
age is that a signal with lower amplitude has lower variance, and
herefore any method that removed all data would have perfect
erformance. Therefore, P3 amplitude was also reported, in order
o demonstrate that the EEG signal was not being attenuated. The
ercentage of epochs removed was also recorded, as a measure of
ata retention. These measures were compared for each processing
ethod.
Type 1 error probability was set at .05, pcorrected was set using

onferroni correction for multiple comparisons adjusted for corre-
ation among dependent variables (see Appendix A).

. Results
.1. Simulated data

Due to the non-normal distribution of the detection rates,
ilcoxon Signed Ranks tests were conducted. Table 1 displays the

esults of the simulated data analysis.

able 1
he percentage of artifacts removed for each method and array size.

Method No. channels Percentage of artifacts removed

Channels
Sensitivity,
specificity (%)

Epochs
Sensitivity,
specificity (%)

EOG (%)

FASTER 128 94.47, 98.96 60.24, 97.53 98.99
64 97.02, 98.48 61.83, 97.54 99.07
32 5.88, 96.81 58.64, 97.49 97.64

SCADS 128 100, 96.42 0.15, 99.99 11.69
64 100, 94.10 0.15, 99.99 14.03
32 5.88, 84.50 0.15, 99.99 18.31
nt. (A) The ERP from the dataset before artifact addition. (B) The ERP after addition
omplete removal of all artifacts (i.e. a 100% sensitivity).

5.1.1. Channel artifacts
Wilcoxon Signed Rank tests showed that there was a signifi-

cantly higher channel detection sensitivity for the SCADS method
compared to FASTER using 128 channels (Z = 2.701, p < 0.01). This
significance was not present using 64 or 32 channels. Analysis of the
channel detection specificity of each method, shows that FASTER
had a significantly higher specificity than SCADS using 128-, 64- and
32- channel datasets (Z = 5.375, Z = 5.517, Z = 5.907, respectively,
p < 0.001).

5.1.2. Epoch artifacts
Wilcoxon Signed Rank tests showed that there was a signifi-

cant improvement in the performance of the FASTER method over
SCADS for epoch detection sensitivity using 128-, 64- and 32- chan-
nels (Z = 5.381, Z = 5.408, Z = 5.315, respectively, p < 0.001). SCADS
had a significantly higher specificity than FASTER using 128-, 64-
and 32- channel datasets (Z = 5.304, Z = 5.304, Z = 5.304, respec-

tively, p < 0.001).

5.1.3. Eye and muscle movement artifacts
A Wilcoxon Signed Rank test showed significant improvement

in EOG removal percentage using the FASTER method compared

EMG (%) Discontinuities (%) Linear trends (%) White noise (%)

99.91 82.97 93.04 92.93
99.19 94.68 97.02 95.30
94.17 93.61 95.59 91.29

99.73 79.43 91.19 98.13
98.27 87.43 93.00 96.59
95.36 83.33 93.22 96.53
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Table 2
The median baseline variance and mean amplitude and the % of Staepochs removed for each method and array size.

Method No. channels Baseline variance (�V) P3 amplitude (�V) Epochs removed (%)

FASTER 128 0.193 7.417 3.2
64 0.207 7.746 3.1
32 0.208 8.387 3.3

SCADS 128 0.252 6.990 2.6
64 0.241 6.931 2.4
32 0.217 7.732 2.4

Supervised 128 0.321 6.885 3.3

Raw 128 0.575 14.943 –
64 0.745 26.481 –
32 0.538 12.263 –
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ig. 4. A comparison of EOG removal percentages between FASTER and SCADS. Error
ars represent standard error of the mean.

ith the SCADS methods for datasets of 128, 64 and 32 channels
Z = 5.905, Z = 5.841, Z = 5.754, respectively, p < 0.001). Bonferroni
orrection for 3 comparisons was used. A Wilcoxon Signed Rank test
howed no significant difference in removal percentage between
ASTER and SCADS methods for simulated EMG artifacts. Fig. 4 dis-
lays the percentage of eye movement artifacts that were removed
or each method.

.1.4. Single-channel, single-epoch artifacts
For linear trends, a Wilcoxon Signed Rank test showed a signifi-

ant improvement in removal percentage using the FASTER method
ompared with the SCADS methods for the 64-channel array only
Z = 3.330, p < 0.005). For white noise, a Wilcoxon Signed Rank test
howed a significantly lower removal percentage using the FASTER
ethod compared with the SCADS method for datasets of 128 and

2 channels (Z = 2.691, p < 0.05, Z = 3.02, p < 0.01, respectively). For
iscontinuities, a Wilcoxon Signed Rank test showed no signifi-
ant difference in removal percentage between FASTER and SCADS
ethods.

.2. Real data

Table 2 displays the results from the analysis of the real data.

.2.1. Baseline variance

To compare baseline variances across methods, the median

alue was taken across channels for each dataset. These data are
isplayed in Fig. 5.

A Shapiro–Wilk test of normality showed that the baseline vari-
nces were non-normally distributed. Therefore, non-parametric
Fig. 5. The baseline variance of different array sizes between FASTER, SCADS and
supervised. Values shown are median and error bars display the interquartile range.

statistics were employed. A Friedman test comparing baseline vari-
ances of FASTER, SCADS and supervised for 128 channels was
significant (p < .001). Follow up Wilcoxon tests showed that the
baseline variances for FASTER were significantly lower than either
SCADS or supervised (Z = 4.85, p < .001; Z = 3.55, p < .001, respec-
tively). The baseline variance for SCADS was significantly lower
than for the supervised method (Z = 4.31, p < .001). There were no
significant differences in baseline variance between FASTER and
SCADS when 64 channels were analyzed, nor were there differences
between FASTER and SCADS when 32 channels were analyzed.

In order to compare the effect of array size within methods,
we compared baseline variances of the common channels for each
array size. Alpha was set at pcorrected = .0418. The FASTER method
showed no significant differences in baseline variances depend-
ing on the number of channels processed. The SCADS method
had a lower baseline variance using 64 channels vs. 128 chan-
nels (Z = 3.77, p < .0418), when using 32 channels vs. 128 channels
(Z = 3.42, p < .0418) and using 32 channels vs. 64 channels (Z = 2.13,
p < .0418).

5.2.2. P3 amplitude
Shapiro–Wilk tests of normality showed that the amplitude

data were normally distributed, and therefore parametric statis-
tics were used. FASTER produced a P3 with a significantly
higher amplitude compared to supervised processing, with alpha
set at pcorrected = 0.0446 (t(38) = 2.201, pcorrected < 0.0446). Paired

t-tests (alpha set at pcorrected = 0.0411) showed a significantly
higher P3 amplitude for FASTER vs. SCADS using 64 electrodes
(t(42) = 2.773, pcorrected < 0.0411), and significantly higher P3 laten-
cies (alpha set at pcorrected = 0.0371) for FASTER for 128, 64 and 32
electrodes (t(42) = 2.803, t(42) = 2.642, t(43) = 3.684, respectively,
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ig. 6. Butterfly plots of ERPs after various processing methods. (A) Supervised p
omponent present in C is due to uncorrected EOG artifacts. A 30 Hz low-pass filter

corrected < .0371). Fig. 6 displays butterfly plots of ERPs after var-
ous processing methods and Fig. 7 displays the ERP to the target
timulus at Pz.

.2.3. Contaminated subject removal
From a total of 47 subjects, FASTER identified 4 subjects as con-

aminated in the 128-channel dataset, 4 in the 64-channel dataset,
nd 2 in the 32-channel dataset. In order to test the effect of iden-
ifying contaminated subjects in smaller sample sizes, sub-sets of
he data (ranging from 10 to 47 subjects, with random inclusion
f subjects) were generated. The composition of each sub-set was
huffled 100 times and the number of contaminated subjects was
ecorded for each sample size. Fig. 8 displays these data.
. Discussion

The aim of this study was to quantify the utility of FASTER –
fully automated statistical thresholding method for EEG artifact

ejection, which also incorporates ICA. In order to quantify the per-

ig. 7. ERP to the target stimulus at Pz. The black line is after FASTER processing,
he gray line is after SCADS processing. Dashed lines represent standard deviation.
15 Hz low-pass filter was applied for display only.
ing. (B) FASTER processing. (C) SCADS processing. (D) Filter only. The late frontal
pplied for display only.

formance of FASTER simulated data were analyzed using FASTER
and a variant of SCADS, which is a similar statistical method of arti-
fact detection. Furthermore, real data were analyzed using FASTER,
SCADS, and by supervised detection. FASTER was also tested across
different numbers of scalp electrodes (128, 64 and 32). The results
of the analysis of the simulated data showed that FASTER had gener-
ally high sensitivity and specificity for detection of artifacts. FASTER
had >90% sensitivity and specificity for detection of contaminated
channels, eye and muscle movement artifacts, linear trends and
white noise. SCADS had a significantly higher sensitivity to chan-
nel artifacts than FASTER using 128 channels. However, specificity
was significantly higher for FASTER vs. SCADS across array sizes.
FASTER generally had >60% sensitivity and specificity for detection
of contaminated epochs, versus 0.15% for SCADS. ERP amplitude
was significantly high for FASTER versus the supervised approach.
FASTER was effective in attenuating artifacts in 128-, 64-, and 32-

scalp electrode arrays.

One assumption of FASTER is that uncontaminated EEG parame-
ter distributions should be distributed normally, or approximately
normally. This assumption may be violated if low numbers of

Fig. 8. The number of subjects removed by FASTER as a function of number of
subjects present.
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ata points are employed. The results from the real and simu-
ated datasets show that FASTER worked effectively on datasets

ith 128-, 64- and 32-scalp electrodes. However, the sensitivity
or contaminated channels decreased dramatically, from 94.47% for
28-scalp electrodes and 97.02% for 64-scalp electrodes to 5.88% for
2-scalp electrodes. This may be a result of using simulated data
where the artifact distribution is normal), as the number of con-
aminated channels was lower in the 32-electrode datasets, and
result of using statistical thresholding, as the threshold calcula-

ion was based on a smaller sample size and consequently variance
mong channels was increased. This issue also occurred with the
CADS method. The performance on the detection of other artifacts,
uch as eye and muscle movement artifacts, was largely unaffected
y the number of channels. The SCADS method had a 100% sensi-
ivity to channel artifacts for 128- and 64-electrode datasets, but
ts specificity dropped as the number of channels decreased, from
6.42% for 128-scalp electrodes to 84.91% for 32-scalp electrodes.
his resulted in an average of 4 uncontaminated channels being
nterpolated for 32-electrode sets.

We did not test FASTER on datasets with fewer than 32 channels.
he number of components returned from an ICA decomposition
s equal to or less than the number of channels used: hence, com-
onent independence may decrease as the number of electrodes
ecreases. It is possible that FASTER may be effective at removing
rtifacts at lower electrode densities, but if so used, consideration
ust be taken that components may also contain both artifact and

EG data, and so some EEG data may be lost. Similarly, the perfor-
ance of the channel detection is unknown.
A novel feature of FASTER is that subjects with consistently poor

ata are rejected from the grand average on objective criteria. This
ethod may be optimal for studies with large numbers of subjects

as outliers are more easily identified). However, FASTER can detect
ontaminated subjects in samples with 12 or more subjects.

FASTER generally outperformed modified SCADS on our data
both real and simulated). We analyzed our data using SCADS in
rder to provide a comparison between statistical thresholding
ethods. It should be noted, however, that SCADS was not designed
ith unsupervised full automation as a goal. It is likely that SCADS
ould have performed better had some element of supervision

een involved. A key feature of FASTER was the application of a
tatistical thresholding method to ICA data, and the use of ICA to
ubtract the EOG contribution to the EEG data. It seems that the
ombination of statistical thresholding and ICA may result in an
ffective method for artifact detection.

The present set of benchmarking tests were conducted with data
rom healthy subjects on an oddball task (designed to evoke a P3
RP). It remains to be seen how FASTER will generalize to data from
sychiatric or neurologic patients, older adults, or from children. In
ddition, future work could examine FASTER with data from other
RP paradigms, such as mismatch negativity (MMN), which typ-
cally have smaller amplitudes than P3. Paradigms such as MMN
end to have shorter epoch lengths, which may also influence the
bility of FASTER to detect artifacts. Initial data from our labora-
ory suggest that FASTER can effectively analyze MMN data from
atients with Parkinson’s disease.

The computational requirements of the FASTER method are gen-
rally low, with the exception of the ICA decomposition, which can
ake some time. In this study, we used the Infomax ICA algorithm,
rocessed under 64-bit MATLAB, and the entire processing proto-
ol took up to an hour per dataset on a 64-bit dual-core machine
unning Linux Ubuntu, of which approximately 40 min was the ICA

ecomposition time. Using a different ICA algorithm, for example
he FastICA algorithm, and/or a compiled binary implementation
f the method would increase the speed.

A key benefit of FASTER is that its use does not require the user
o have any knowledge of signal processing. The user can simply
e Methods 192 (2010) 152–162 161

select the folder containing the raw data and FASTER will out-
put an artifact-attenuated, grand-averaged dataset. Alternatively,
researchers who prefer to process EEG data using their favored
approach may choose to use FASTER to conduct a first pass of their
data. Furthermore, given the diversity of signal-processing meth-
ods applied to EEG data (e.g., different criteria for artifact rejection),
the use of FASTER may help standardize the approach to EEG anal-
ysis. It is worth noting that the baseline variance of supervised
processed data was itself quite variable (nearly twice as high as
FASTER), indicating that even researchers experienced in EEG anal-
ysis can vary in their degree of artifact rejection. Our intention is to
integrate FASTER into the EEGLAB (Delorme and Makeig, 2004) pro-
cessing software as a plugin, with the source code for FASTER freely
available. EEGLAB is a popular, free, software tool that is already
used by many researchers. The default settings in this plugin will
correspond to the values employed in the present study. However,
the user will be able to manipulate any of the settings described
in this manuscript via a graphical user interface. This plugin will
include the option to display the baseline variance of each dataset.
Further work on FASTER could include the addition of artifacts for
removal of further artifact types, e.g., MRI artifacts.

The aim of this paper was to demonstrate a fully automated,
unsupervised method for EEG artifact detection and rejection. The
data from this study show that FASTER can reliably detect artifacts
commonly found in EEG data and may even be superior to super-
vised detection for some metrics. It is hoped that FASTER will be of
use to the EEG research community.

Appendix A.

• The Hurst exponent is a measure of long-range dependence
within a signal, with a range of 0–1. It can be thought of as the
tendency of a signal to promote trends or not. Discussions of its
estimation can be found in Bardet et al. (2003) and Mielniczuk
and Wojdy (2007). Human phenomena such as EEG have val-
ues of H ≈ 0.7, and so it can be used as a measure for detecting
non-biological EEG data (Vorobyov and Cichocki, 2002; Bian et al.,
2006). To detect channels with a large amount of non-biological
noise, Hurst exponents were estimated using MATLAB’s wfmbesti
function (the discrete second order derivative estimate was
used).

• The equation used for Bonferroni correction with correlated
dependent variables was:

˛new = ˛old

(
r̄ + 1 − r̄

N

)
where ˛new was the new effective significance value; ˛old was
the original significance value (e.g. 0.05); r̄ was the mean Pearson
correlation coefficient among all dependent variables; N was the
number of comparisons made.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jneumeth.2010.07.015.
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