Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence

Year
2015
Type(s)
Author(s)
French, Leon and Gray, Courtney and Leonard, Gabriel and Perron, Michel and Pike, G Bruce and Richer, Louis and Séguin, Jean R and Veillette, Suzanne and Evans, C John and Artiges, Eric and others
Source
JAMA psychiatry, 72(10): 1002—1011, 2015
Url
http://jamanetwork.com/journals/jamapsychiatry/fullarticle/2429551

Importance  Cannabis use during adolescence is known to increase the risk for schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence may be of particular importance with regard to vulnerability of the male brain to cannabis exposure.

Objective  To evaluate whether the association between cannabis use and cortical maturation in adolescents is moderated by a polygenic risk score for schizophrenia.

Design, Setting, and Participants  Observation of 3 population-based samples included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899 [57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics Consortium. Data analysis was performed from March 1 through December 31, 2014.

Main Outcomes and Measures  Cortical thickness derived from T1-weighted magnetic resonance images. Linear regression tests were used to assess the relationships between cannabis use, cortical thickness, and risk score.

Results  Across the 3 samples of 1574 participants, a negative association was observed between cannabis use in early adolescence and cortical thickness in male participants with a high polygenic risk score. This observation was not the case for low-risk male participants or for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = −2.36; P = .02). Finally, in the ALSPAC high-risk group of male participants, those who used cannabis most frequently (≥61 occasions) had lower cortical thickness than those who never used cannabis (difference in cortical thickness, 0.07 [95% CI, 0.01-0.12]; P = .02) and those with light use (<5 occasions) (difference in cortical thickness, 0.11 [95% CI, 0.03-0.18]; P = .004).

Conclusions and Relevance  Cannabis use in early adolescence moderates the association between the genetic risk for schizophrenia and cortical maturation among male individuals. This finding implicates processes underlying cortical maturation in mediating the link between cannabis use and liability to schizophrenia.