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Abstract 

Stop-signal reaction time (SSRT), the time needed to cancel an already-initiated motor response, 

quantifies individual differences in inhibitory control. Electrophysiological correlates of SSRT 

have primarily focused on late event-related potential (ERP) components over midline scalp 

regions from successfully inhibited stop trials. SSRT is robustly associated with the P300, there is 

mixed evidence for N200 involvement, and there is little information on the role of early ERP 

components. Here, machine learning was first used to interrogate ERPs during both successful 

and failed stop trials from 64 scalp electrodes at 4 ms resolution (n=148). The most predictive 

model included data from both successful and failed stop trials, with a cross-validated Pearson’s 

r of 0.32 between measured and predicted SSRT significantly higher than null models. From 

successful stop trials, spatiotemporal features overlapping the N200 in right frontal areas and the 

P300 in frontocentral areas predicted SSRT, as did early ERP activity (<200 ms). As a 

demonstration of the reproducibility of these findings, the application of this model to a separate 

dataset of 97 participants was also significant (r = 0.29). These results show that ERPs during 

failed stops are relevant to SSRT, and that both early and late ERP activity contribute to individual 

differences in SSRT. Notably, the right lateralized N200, which predicted SSRT here, is not often 

observed in neurotypical adults. Both the ascending slope and peak of the P300 component 

predicted SSRT. These results were replicable, both within the training sample and when applied 

to ERPs from a separate dataset. 
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Highlights 

- A right lateralized N200 and the P300 during successful stop trials predicted individual 

differences in inhibition 

- Data were internally and externally validated on out-of-sample data 

- Application of machine learning methods to EEG data may improve reproducibility   



PREDICTING INHIBITORY CONTROL 

 4 

1. Introduction 

The ability to inhibit unwanted behaviors or to quickly cancel an already-initiated response relies 

on effective and rapid inhibitory control in the brain. Deficits in this system are characteristic of 

a wide range of psychological disorders, such as attention deficit hyperactivity disorder (ADHD), 

and a variety of addictive behaviors. The stop-signal task (SST) can assay inhibitory control by 

requiring participants to respond as quickly as possible to frequent ‘Go’ cues but to inhibit an 

already-initiated motor response following unexpected and infrequent ‘Stop’ cues (Verbruggen 

et al., 2008). On trials with a stop stimulus, the ‘horse-race model’ posits a race between two 

separate processes that are each triggered by the Go and Stop signal (Band et al., 2003). If the 

stop process is completed before the go process, subjects will successfully inhibit their responses 

and vice-versa (Verbruggen et al., 2008). The stop-signal reaction time (SSRT) indexes the time 

needed to successfully inhibit a response during the SST (Congdon et al., 2012), and is a reliable 

measure of deficits in inhibitory control. The SSRT is a measure of a covert mental process and 

can be calculated by subtracting the average stop signal delay from the participant’s go reaction 

time. Shorter SSRTs indicate better inhibitory control. In neurologically healthy adults, SSRTs are 

approximately 200-270 ms (Dimoska et al., 2006; Hoptman et al., 2018; Huster et al., 2013; van 

Boxtel et al., 2001; Wessel and Aron, 2015; Wessel et al., 2016), but longer in adults with ADHD 

(Dawe et al., 2004; Lijffijt et al., 2005) and in individuals with addictions (Luijten et al., 2011).  

The amplitude and latency of event-related potential (ERP) components, obtained using 

electroencephalography (EEG), are associated with performance during the SST (e.g., Kenemans, 

2015). Two ERP components, the P300 and N200, are predominantly associated with response 

inhibition. A frontocentral N200, with a negative component peaking around 200-250 ms, is 

typically observed for failed relative to successful stops (Galdo-Alvarez et al., 2016; Greenhouse 

and Wessel, 2013). In ERPs time-locked to the erroneous response, an error-related negativity 

(ERN/Ne)/error positivity (Pe) complex for failed stops is often found. A right lateralized N200 

has been observed during successful stops in adolescents with ADHD versus controls (Liotti et al., 

2010), but is not usually observed in neurotypical adults (see Wessel & Aron, 2014 for a 
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discussion). Studies have consistently shown larger P300 amplitudes for successful vs. failed stop 

trials in healthy participants (Bekker et al., 2005; Greenhouse and Wessel, 2013; Kok et al., 2004; 

Lansbergen et al., 2007). This P300 has a frontocentral distribution (Wessel et al., 2014) and 

occurs approximately 150 ms after the N200. Although the N200 and P300 are both associated 

with inhibition during the SST, both components peak after, or just before, the SSRT. For this 

reason, some have argued that N200 and P300 do not directly reflect inhibition, but rather reflect 

conflict and evaluative processes, respectively (see Huster et al., 2013 for a detailed review). 

Earlier ERP components that are sometimes reported during stop trials include the N100 and 

P200 (Bekker et al., 2005; Dimoska et al., 2006; Hoptman et al., 2018; Kenemans, 2015; van Gaal 

et al., 2011).  

In contrast to comparisons between successful and failed stop trials, findings with respect to 

ERP correlates of SSRT are more inconsistent. In visual SSTs, no significant correlations between 

a central N200 and SSRT have been reported (Anguera and Gazzaley et al., 2011; Hoptman et al., 

2018), whereas van Gaal et al. (2011) found a positive correlation between these two variables. 

Using median splits to create two groups of fast and slow SSRTs, van Boxtel et al. (2001) reported 

higher N200 amplitude in groups with fast SSRT using a sample of 10 participants in a visual SST. 

P300 amplitude was negatively correlated with SSRT (Lansbergen et al., 2007; Smith et al., 2006), 

but van Gaal et al. (2011) found no significant correlation. Given that P300 peak latency is longer 

than the SSRT, Wessel and Aron (2015) correctly predicted that P300 onset latency would be a 

better correlate of individual differences in SSRT than P300 peak latency. 

Mixed findings, such as those related to ERP correlates of SSRT, are common in cognitive 

neuroscience. One reason for this is low power. Acquiring brain data is expensive, as in functional 

magnetic resonance imaging (fMRI) and magnetoencephalography, and time-consuming, as in 

EEG. Therefore, many neuroscience studies have small sample sizes which, in combination with 

small effect sizes, increase the probability of false positive findings (Button et al., 2013; Eklund et 

al., 2016; Munafò et al., 2017). A second reason may be that data from EEG or fMRI are high 
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dimensional. In the case of EEG, there are often more than 64 channels, typically acquired at a 

sampling rate of over 256 Hz. In order to reduce the exposure to type I errors (i.e., false positives), 

data from high density EEG arrays are typically reduced in dimension, often by averaging over 

some time interval and/or selecting a subset of channels to define the ERP components. It is also 

possible that focusing on a subset of data, or correcting for multiple univariate tests, increases 

the probability of type II errors (i.e., false negatives). A multivariable approach, in which all data 

are used in a single model, will likely be more useful for predicting individual difference in 

inhibitory control (Jollans and Whelan, 2018). However, when the ratio of variables to 

participants increases, which is usually the case for EEG data, the model will inevitably fit to 

idiosyncrasies in the data (i.e., to noise) and will fail to generalize to unseen data (Whelan and 

Garavan, 2014): this is known as overfitting. 

One approach that has promise for addressing both type I and type II errors, and for 

improving reproducibility by reducing overfitting, is machine learning. This approach is 

increasingly popular in cognitive neuroscience (e.g. Chung et al., 2018; Jollans and Whelan, 2018; 

Vu et al., 2018; Whelan et al., 2014; Woo et al., 2017) but is, relative to MRI, rarely used to 

interrogate ERPs (but cf. Kiiski et al., 2018; Stock et al., 2016; Vahid et al., 2018). In order to 

overcome the problem of fitting a model with many more variables than subjects, regression 

weights can be penalized (termed regularization), with the elastic net being one common 

regularization method (Zou and Hastie, 2005). Rather than relying on null-hypothesis 

significance testing, machine learning typically employs out-of-sample validation, in which 

models are tested against unseen data. Another benefit is the automatic selection of model 

hyperparameters by defining them from the data itself, which reduces the ‘researcher degrees of 

freedom’ (Baldwin, 2017; Simmons et al., 2011).  

While machine learning has not been applied previously to SST data collected under EEG, a 

study using the Go/No Go task, which measures the blocking of response initiation rather than 

action cancellation, suggested that this approach holds promise for predicting the speed and 
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accuracy of inhibition. Stock et al. (2016) trained several machines to predict group membership 

(good accuracy/slow response vs. low accuracy/fast response). Dimensionality reduction was 

done in space (selecting only 16 channels) and time (selecting six time bins based on ERP 

components) to ensure that the number of features (input variables) did not exceed the number 

of participants. Classification accuracies on an external validation set showed that three of the 

four machines performed significantly better than chance, with areas under the curve of receiver 

operating characteristic of approximately 0.6 (0.5 represents classification at chance level). 

Contrary to expectations, ERP features from around 200 and 300 ms over lateral parietal and 

occipital electrodes, and not N200 and P300 components from midline electrodes, were most 

predictive of group membership.  

Here, we applied machine learning to a large sample to predict SSRT from EEG data. Rather 

than performing dimension reduction on the data, we used the elastic net, which has benefits of 

performing feature selection (i.e., providing a sparse solution) and regularization in a single 

approach. Furthermore, we aimed to identify the correlates of SSRT performance, rather than a 

between-group classification (which reduces statistical power; Royston et al., 2006). Our purpose 

here was to identify processes associated with individual differences in response inhibition 

rather than successful or failed stopping per se. The ability to search for inhibitory control 

correlates over the entire ERP time-course should shed light on the relative importance of early 

versus later ERP components (e.g., N200, P300 onset and peak). Guided by previous literature, 

we first applied machine learning to successful stop trials. However, we also investigated the 

contribution of failed stop trials to inhibitory control, and finally we tested a model that included 

ERP activity from both successful and failed stop trials. To quantify reproducibility, we employed 

both internal and external validation, which is the gold standard for reproducible analysis.  
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2. Materials and Methods 

2.1. Participants 

Participants were pooled from four different studies conducted in University College Dublin and 

Trinity College Dublin for a total of 282 participants (mean = 35.03 years old, standard deviation 

= 14.72, range 16-69 years; 175 female). The exclusion criteria are listed per project in the 

Supplementary Material. The studies were approved by the University College Dublin School of 

Psychology ethics committee and the Trinity College Dublin School of Psychology ethics 

committee. Participants provided informed consent.  

2.2. Task 

Participants were seated in front of a cathode ray tube computer monitor with a screen resolution 

of 1024 x 768 pixels at a refresh rate of 75 Hz. The distance from the position of the chair to the 

monitor (screen size 32 x 24 cm) was standardized (screen to back of chair = 108 cm). 

Participants were asked to maintain their focus on the stimuli on the screen during the 

experiment.  

Participants performed an adaptive event-related SST, which took approximately 9 min to 

complete. The task consisted of 135 Go trials interspersed with 45 Stop trials; with one 

randomized Stop trial appearing within four Go trials. The task was presented in 3 blocks of 60 

trials. Each trial began with a central fixation cross for 1000 ms and the total duration of a trial 

was always 1000 ms. On every trial, participants were presented with arrows pointing either to 

the left or right, shown centrally on the screen for 750 ms. During Go trials, participants were 

required to make a single button-press response via an Xbox 360 game controller with their left 

or right index finger corresponding to the direction of the arrow as fast as possible. In stop trials, 

the Go stimulus was followed by an arrow pointing upwards (i.e., the Stop signal), which required 

participants to inhibit their motor responses. A tracking algorithm adjusted task difficulty by 

varying the stop-signal delay (SSD; the time interval between Go signal and Stop signal onsets). 

The aim was to produce 50% successful and 50% unsuccessful inhibition trials. The initial SSD 
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was 250 ms, but was adjusted according to a participant’s performance, to between 50 ms and 

450 ms. These limits were adjusted depending on task performance, making the SSD shorter (i.e., 

the task easier) after an unsuccessful stop trial, and the SSD longer (i.e., the task more difficult) 

after a successful stop trial. A moving average of go reaction times (RTs) began on the 10th trial. 

Participants were presented with a “Speed up!” prompt for 2 s if they failed to respond to 2 out of 

5 Go trials, or if their last RT was longer than 1.5 times their average RT. If the participant 

responded to the Go stimulus before Stop stimulus presentation (i.e., responded during the SSD) 

then the SSD was adjusted downwards for subsequent trials.  

The SSRT refers to the time taken to cancel a prepotent motor response after Stop stimulus 

presentation. According to the horse-race model (Logan and Cowan, 1984), the finish of the stop 

process can be estimated from a subject’s distribution of RTs on Go trials. The left side of the 

distribution of the RTs on Go trials represents faster responses that increase the probability of 

failure to inhibit a response (i.e., the go process is more likely to win the race), whereas the right 

side represents slower responses that increase the probability of successful inhibition (i.e., the 

stop process is more likely to win the race; see Figure 1). The integration method of SSRT 

calculation was used (Logan and Cowan, 1984). That is, if a subject failed to inhibit on n% of Stop 

trials, the finishing time of the stop process was assumed to be approximately equal to the nth 

percentile of the go RT distribution. The mean SSD was then subtracted from the nth percentile of 

the go RT distribution, resulting in an estimate of SSRT. Participants with SSRT < 75 ms were 

excluded from the analysis.  
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Figure 1. Illustration of the horse-race model of inhibitory control, where a participant’s go RT 

distribution is superimposed onto a timeline for Stop trials. In this example, the participant has a 

successful stop rate of 40%, such that the upper 40% of the Go RT distribution corresponds to 

slower Go RTs that would produce successful stops, while the lower 60% of the Go RT distribution 

corresponds to faster Go RTs that would produce failed stops.  

 

2.3. EEG recording and preprocessing 

EEG data were recorded using the ActiveTwo Biosemi™ system in a soundproofed, darkened 

room from 70 electrodes (64 scalp electrodes), organized according to the 10–5 system 

(Oostenveld and Praamstra, 2001). Activity related to eye movement was recorded bilaterally 

from approximately 2 cm below the eye (vertical) and from the outer canthi (horizontal 

electrooculography). EEG data preprocessing was carried out using the EEGLAB toolbox 

(Delorme and Makeig, 2004; http://sccn.ucsd.edu/eeglab) in conjunction with the FASTER plug-

in (Fully Automated Statistical Thresholding for EEG artefact Rejection; Nolan et al., 2010; 

http://sourceforge.net/projects/faster). The data were bandpass filtered between 0.1 and 95 Hz, 

notch filtered at 50 Hz and average referenced across all scalp electrodes. Data were 

subsequently epoched from 500 ms pre-stimulus to 2000 ms post-stimulus. FASTER identified 

and removed artefactual (i.e., non-neural) independent components, removed epochs containing 
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large artefacts (e.g., muscle twitches) and interpolated channels with poor signal quality. The 

remaining EEG data were then visually inspected to ensure good quality and that any remaining 

noisy data were removed. A total of 37 subjects across the whole data set were rejected from 

further analysis due to artefacts, missing data or SSRT <75 ms. Here, we report the results for the 

remaining 245 participants.  

2.4. EEG ERP calculation 

Three trial types were identified and epoched in the EEG: trials in which participants successfully 

responded after a Go cue (the epoch was defined -100 ms to 600 ms with respect to the Go cue), 

trials in which participants successfully inhibited after a Stop cue (Successful Stop) and trials in 

which participants failed to inhibit after a Stop cue (Failed Stop). In Stop trials, the epoch was 

defined with respect to the Stop cue, and averaged across epochs to obtain a Successful and Failed 

Stop ERP. In order to isolate activity associated specifically with stopping, the influence of the Go 

stimulus – which always appeared prior to each Stop cue – needed to be subtracted. According to 

the horse race model of inhibition in the SST, slower reaction times in go trials are related to 

successful inhibition (because the Stop process ‘wins’ the race), and faster reaction times are 

related to failed inhibition (because the Go process ‘wins’ the race; Logan and Cowan, 1984). For 

this reason and as it is standard in the SST literature (e.g., Kok et al., 2004), we defined “fast” and 

“slow” Go trials based on each participant’s own median reaction time, and calculated a “fast” and 

“slow” Go ERP, which we then subtracted from the Failed and Successful Stop ERP, respectively 

(Palmwood et al., 2017; O’Halloran et al. 2019). As is typical for SST ERP analyses, baseline 

removal (-100 to 0 ms) was performed separately for Go and Stop ERPs prior to the subtraction 

of “fast” and “slow” Go trials from Stop trials (Kok et al., 2004; Palmwood et al. 2017). This 

procedure was applied per channel per participant.  
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2.5. Machine learning analysis 

2.5.1. Data preparation 

The dataset of 245 participants was divided into two groups: the internal validation set (n=148) 

and the external validation set (n=97). In order to balance the internal and external validation 

sets, we assigned individuals to each set randomly, but iterated this assignment until the 

female:male ratio (1.6:1, approximately) was similar across sets. ‘Features’ (the input to the 

machine learning model) consisted of ERPs averaged in 4-ms bins from 0 to 600 ms after the Stop 

cue at each of the 64 channels. We fitted models for the Successful and Failed Stop ERP separately, 

with 9,856 spatio-temporal features in each model. Additionally, we examined both Successful 

and Failed Stop trials (termed the ‘Full model’), with 19,712 spatio-temporal features. We 

controlled for age and sex (Coxon et al., 2012; Hsieh and Lin, 2017, Rubia et al., 2013) by adding 

them as features. We also conducted a supplementary analysis in which age and sex were not 

included.  

2.5.2. Analysis of the internal validation set 

In order to choose the hyperparameters of the model (described below), we applied nested cross-

validation on the internal validation set using 10 main folds (Figure 2). In each main fold, 90% of 

the data were used for training and 10% for testing. In each subfold (inner cross-validation), the 

data were z-scored and extreme values were replaced with a value of 3 (i.e., Winsorizing). The 

model was fitted with a range of hyperparameters using the elastic net (Friedman et al., 2010; 

Qian et al., 2013; Zou and Hastie, 2005), which is a regularization method for generalized linear 

models that includes 𝑙1 regularization (i.e., lasso regularization - least absolute shrinkage and 

selection operator) and 𝑙2 regularization (as in ridge regularization). Lasso regularization allows 

parameters to be 0, promoting parsimonious solutions; whereas ridge regularization allows 

parameters to be small but not to reach 0, avoiding overfitting (Murphy, 2012). In this model, the 

objective is to minimize the following equation:  

min [
1

2
‖𝑌 − 𝑋𝛽‖2 +  𝜆𝛼‖𝛽‖𝑙1

+
𝜆(1 − 𝛼)

2
‖𝛽‖𝑙2

2 ] 
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where 𝑌 is the dependent variable (SSRT), 𝑋 the input data with the ERPs and covariates, 𝛽 the 

regression coefficients, 𝜆 the penalization for complexity and 𝛼 is weighting parameter between 

ridge and lasso regression (Friedman et al., 2010). The complexity and weighting parameters (𝜆 

and 𝛼, respectively) are not known a priori. Therefore, a range of values were explored: 15 

linearly-spaced values of both hyperparameters in the range of 0.01 to 10 and all their possible 

combinations (i.e., a search grid of 225 parameter-pair values). The prediction accuracy of each 

parameter combination was assessed using the mean squared error. The parameter combination 

that yielded the lowest error was selected per subfold. The mode of 𝛼 and the median of 𝜆 across 

subfolds were selected as parameters per main fold. These optimal parameters from the nested 

cross validation were used to fit a model using the training set of the main fold (outer cross-

validation). The prediction of the model on the test set of each main fold was saved and pooled 

across main folds. 

Figure 2. Procedure for the nested cross-validation. MSE=mean squared error.  

 

The analysis on the internal validation set was performed 100 times where the training and 

test sets were randomly assigned. In order to quantify model performance further, we repeated 
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the entire procedure using random-label permutation (i.e., each subject was randomly assigned 

to an SSRT from a different subject). All null models included the EEG data and sex and age as 

covariates. The accuracy achieved using the null model was then compared to the accuracy of the 

model with real data (i.e., actual model) by performing a t-test. The actual model was deemed to 

be successful if the Pearson’s r of the actual model was statistically significantly higher than the 

one of the null model (p<0.05). Cross-validated r is the most appropriate measure to use with 

linear regression conducted using machine learning (see for example Jollans et al., 2017). Results 

reported for the internal validation are mean values across all 100 iterations of the analysis. This 

procedure was applied to the Successful and Failed Stop ERPs separately, and to both Stop ERPs 

jointly.  

2.5.3. Data visualization and interpretation 

It can be challenging to adequately represent the results of machine learning analyses (Jollans & 

Whelan, 2016; Woo et al., 2017). Features are typically distributed in space and, in the case of 

EEG, in time (e.g., Kiiski et al., 2018; O’Halloran et al., 2019; Vahid et al., 2018). Furthermore, the 

final model includes features that share variance with each other. With elastic net regularization, 

some features can be assigned a weight of 0 (i.e., that feature is not selected in the model). To 

further interrogate the results, we first summed each feature’s non-zero count in each main fold, 

and then averaged this value across the 100 iterations (the ‘selection frequency’). We also 

calculated the selection frequency from the null models, and took the 95th percentile of the null 

distribution as a threshold. For comparison with previous literature, we highlighted spatio-

temporal features in the surviving features that overlapped spatially and temporally with known 

SST-related components. As a further aid to interpretation, we created voxels (3-dimensional 

elements) whereby the first 2 dimensions corresponded to spatial locations from anterior to 

posterior and from left to right, with each electrode assigned a position in the spatial dimensions 

(i.e., in a 2D grid). Clusters with 3 or more voxels were kept for visualization and interpretation.  
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2.5.4. Analysis of the external validation set 

The analysis of the internal validation set was applied to the Successful and Failed Stop ERPs 

separately, and then to a model with both combined. The best model based on the Pearson’s 

correlation was then selected to test on the external validation set. The average beta values from 

100 iterations of the internal validation set were used as the final model to test on the external 

validation set. The validation set (n=97) was scaled to the internal validation data (they were z-

scored and Winsorized using the mean and standard deviation of the internal validation set). 

Prediction accuracy on the external validation set was quantified using the mean squared error 

and Pearson’s correlation between the predicted and actual SSRT.  

2.6. Mass-univariate approach 

In order to compare the results of the machine learning approach with a standard mass-

univariate test (i.e., testing each feature individually then correcting for multiple comparisons), 

we calculated the correlation between each single EEG spatio-temporal feature and the SSRT in 

the internal and external validation sets separately. We also calculated the correlation between 

EEG features and the shuffled SSRT 100 times (i.e., a random-label permutation). From each 

shuffle, we saved the maximum t value. Taking the 5th percentile from this maximum t-value 

distribution corrects for multiple comparisons at the 0.05 level, while allowing for correlations 

among features. 

3. Results 

3.1. Behavioral results 

Table 1 displays the characteristics and statistical comparison of the internal and external 

validation sets. Within each set, the failed stop RTs were significantly faster than the mean Go RT 

(t(147) = 25.25, p = 2.48*10-55, t(96) = 23.27, p = 3*10-41 for internal and external validation 

datasets, respectively), satisfying an assumption of the race model. There was a significant 

difference in failed stop RT between internal and external validation datasets (p = 0.03, 16 ms). 
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Internal 

validation set 
External  

validation set 
Statistical test 

(df) 
p 

Sex (Female:Male) 91:57 61:36 𝑋2(1)=0.260 0.61 

Age (years) 35.27 (14.53) 33.96 (15.56) t(243) = 0.670 0.50 

SSRT (ms) 184 (53) 187 (44) t(243) = -0.423 0.67 

Mean Go RT (ms) 489 (63) 476 (69) t(243)=0.816 0.42 

Mean failed stop RT (ms) 424 (57) 408 (63) t(243)=2.100 0.03 

% successful stops  58.05 (9.62) 53.03 (9.44) t(243)=1.442 0.15 

No. of successful stop epochs  19.58 (4.79) 20.47 (3.83) t(243)=-1.542 0.12 

No. of failed stop epochs  16.02 (5.28) 16.62 (4.88) t(243)=-0.893 0.37 

Table 1. Characteristics and statistical comparison of the internal and external validation sets. 

SSRT: stop-signal reaction time; RT: reaction time; df: degrees of freedom. Means and standard 

deviations are reported, except for sex. For all analyses, t-tests were used, except for sex 

comparisons, which used chi-square.  

 

3.2. Internal validation 

3.2.1. Model with Successful Stop ERPs  

The internal validation model with only Successful Stop data from 148 participants returned a 

mean cross-validated Pearson’s r of 0.29 (SD = 0.04), which significantly out-performed the null 

model (mean r = -0.02) on over 97% of iterations, (t(198) = 24.77, p = 1.48*10-62). 3.1% of 

features (304) from the actual model were above the selection frequency threshold (i.e., were 

selected in >16% of models; Figure 3). Age survived this threshold with a selection frequency of 

96%, but sex did not. The spatiotemporal features that were selected in more than 50% of the 

iterations are listed in Table S3.  
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Figure 3. Maps of beta values, ERP voltage and selection frequency for the Successful Stop ERP-

based features that survived the 95th percentile threshold from the null distribution. In the Beta 

map, warm colors indicate a positive ERP-SSRT relationship, whereas cool colors indicate a 

negative ERP-SSRT relationship. Features corresponding to the N200 and P300 components are 

highlighted in purple boxes. 

 

Two clusters in the Successful Stop model overlapped with spatio-temporal 

characteristics of the P300 (see Tables 2, S4). Specifically, an early cluster was found between 

222.7 and 226.5 ms, which might correspond to the ascending part of the P300. Additionally, a 

later cluster was found between 347.7 and 359.4 ms, which might correspond to the peak 

amplitude of the P300. The relationship between the amplitude of these clusters and SSRT was 

negative (i.e., lower amplitude associated with longer SSRT; see Beta map in Figure 3). 

Topographical plots are shown in Figure 4 and in Online Supplementary Videos 1-3. ERPs of 

central channels showing the P300 are shown in Figure S1. One cluster overlapped with spatio-
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temporal characteristics of the N200 (i.e., 214.8-226.6 ms in right frontal channels) and had a 

positive relationship with SSRT (Figure 3, see Figures S2 and S6 for ERP plots). One cluster at 

approximately 100 ms with positive voltage was found over parietal-occipital areas and showed 

a positive relationship with SSRT. This cluster included the P2 electrode which was selected on 

97% of the iterations (Table S3; see Figure S3 for ERP plots).  

 

Time bin (ms) 
Cluster 

size 
Mean 

frequency (%) 
Mean 

voltage (V) 
Channels 

Associated ERP 
component 

109.4-125 10 25.9 0.85 POz, P2, CP1, Pz P100 

179.7-195.3 9 35.4 0.59 Fp1, Afz, Af7, Af3   

347.7-359.4 8 22.1 2.76 C6, C4, CP4, Cz, C2 Late P300 

222.7-226.6 7 14.1 2.15 C1, CPz, FC3, CP1, Cz Early P300 

214.8-226.6 7 11.9 -1.24 FC4, FC6, C6 N200 

101.6-117.2 5 17.8 -2.06 O2, PO4   

343.8-359.4 5 15.6 -2.65 PO7   

109.4-113.3 4 22.6 -0.38 T7, FT7, FC5   

Table 2. Clusters of more than three voxels identified between 100 and 400 ms in the Successful 

Stop model. For the full list of clusters, see Tables S4 and S9.  

 

 

Figure 4. Topographic plots of the selection frequency at selected time bins between 100 and 

400 ms for the Successful Stop model. The color represents the selection frequency of the features 

(channel-time point pair) across iterations that survived the 95th percentile threshold from the 

null distribution.  
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3.2.2. Model with Failed Stop ERPs 

The internal validation of the Failed Stop model returned a mean cross-validated Pearson’s r of 

0.18 (SD = 0.04), which significantly out-performed the null model (mean r = -0.03) on over 92% 

of iterations (t(198) = 17.01, p = 1.37*10-40). The 95th percentile of the null distribution 

corresponded to a 12% selection frequency: 3.8% of features from the Failed Stop ERPs were 

above this threshold (374 features, Figure 5), including age and sex (selection frequencies of 90% 

and 21%, respectively). Failed stop features with a selection frequency >50% are shown on 

Table S3.  

 

Figure 5. Maps of beta values, ERP voltage and selection frequency for the Failed Stop ERP-based 

features that survived the 95th percentile threshold from the null distribution. In the Beta map, 

warm colors indicate a positive ERP-SSRT relationship, whereas cool colors indicate negative 
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ERP-SSRT relationship. Features corresponding to the N200 and P300 components are 

highlighted in purple boxes. 

 

Five clusters overlapped spatio-temporal characteristics of the P300 component (see 

Tables 3 and S5), in frontocentral areas in the time windows between 226.6 and 234.4 ms, 277.3 

and 285.2 ms, 293 and 297 ms, 312.5 and 316.4 ms, and 328.1 and 335.9 ms. These clusters had 

a negative relationship with SSRT (see Beta map in Figure 5). Topographical plots are shown in 

Figure 6 and in Online Supplementary Videos 4-6. One cluster over parietal-occipital areas 

between 257.8 and 269.5 ms overlapped with the negative polarity of the P300 dipole (see 

Figures S5, S7).  

 

Time bin 
(ms) 

Cluster 
size 

Mean 
frequency (%) 

Mean 
voltage (V) Channels 

Associated ERP 
component 

257.8-269.5 15 16.7 -1.64 Pz, POz, PO4, P3, PO3, P5 Dipole of P300 

199.2-214.8 12 8.4 -1.07 PO8, P4, O2, P6, P8  

128.9-144.5 10 20.4 -1.27 FC5, F3, F7, Af7, C5, F5  

191.4-199.2 8 4.6 1.35 T7, C5, P1, C3, CP3  

277.3-285.2 7 25.5 -2.89 PO3, O1, Pz, PO4  

207-226.6 7 12.4 1.71 C5, T7  

277.3-285.2 7 9.3 3.17 FC3, FC1, F1, Afz P300 

199.2-210.9 6 39.7 1.10 Fp1, Af3, Fpz  

312.5-316.4 5 24.5 4.21 F1, Fz, F2 P300 

328.1-335.9 5 20.1 5.54 FCz, FC2, FC4 P300 

296.9-308.6 5 10.4 -3.98 PO3, O1  

312.5-316.4 5 4.1 -1.82 CP5, P3, T7, PO7  

293-297 5 4.0 3.42 Afz, Fz, Af4, FCz P300 

226.6-234.4 4 20.1 1.86 Fp1, Af7 P300 

117.2-125 4 15.7 -0.61 T7, TP7  

Table 3. Clusters of more than three voxels identified between 100 and 400 ms in the Failed Stop 

model. For the full list of clusters, see Tables S5 and S10.  
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Figure 6. Topographic plots of the selection frequency at selected time bins between 100 and 

400 ms for the Failed Stop model. The color represents the selection frequency of the features 

(channel-time point pair) across iterations that survived the 95th percentile threshold from the 

null distribution.  

 

3.2.3. Full model 

The mean cross-validated Pearson’s r of the model including both the Successful and Failed Stop 

ERPs was 0.32 (SD = 0.04), which significantly out-performed the null model (mean r = -0.05) on 

over 99% of iterations (t(198) = 30.18, p = 5.33*10-76). The 95th percentile of the null distribution 

corresponded to a selection frequency of 9% (Figures 7, 8, S4 and S5). 3.4% of features (666) 

from the actual model were above this threshold. Age survived this threshold with a selection 

frequency of 70%, but sex did not. The spatio-temporal features that were selected in more than 

50% of the iterations are listed in Table S6. For the full list of features, see Table S11.  
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Figure 7. Maps of beta values, ERP voltage and selection frequency for the Successful Stop ERP-

based features that survived the 95th percentile threshold from the null distribution in the model 

including both Successful and Failed Stop ERPs. In the Beta map, warm colors indicate a positive 

ERP-SSRT relationship, whereas cool colors indicate negative ERP-SSRT relationship. Features 

corresponding to the N200 and P300 components are highlighted in purple boxes. 
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Figure 8. Maps of beta values, ERP voltage and selection frequency for the Failed Stop ERP-based 

features that survived the 95th percentile threshold from the null distribution in the model 

including both Successful and Failed Stop ERPs. In the Beta map, warm colors indicate a positive 

ERP-SSRT relationship, whereas cool colors indicate negative ERP-SSRT relationship. Features 

corresponding to the N200 and P300 components are highlighted in purple boxes. 

 

Topographical plots with the cluster threshold are shown in Figure 9 and in Online 

Supplementary Videos 7-12. Six clusters in the Failed Stop ERP and two clusters in the Successful 

Stop ERP overlapped with spatio-temporal characteristics of the P300 (see Table 4, S7-S8). The 

relationship between the amplitude of these clusters and SSRT was negative (i.e., lower amplitude 

associated with longer SSRT; see Beta map in Figure 8.). One cluster in both Successful and Failed 

Stop ERPs was concomitant with the negative pole of the P300 in parietal-occipital areas (frontal 

and parietal-occipital channel activity were significantly negatively correlated, see Figure S7). 

Additionally, we found one cluster at approximately 200 ms over frontal areas with positive 
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voltage in both the Successful and Failed Stop ERPs. There was a positive cluster at approximately 

100 ms over parietal areas, primarily in the Successful Stop ERP (see Table 4). The cluster 

includes the P2 electrode, which was selected on 99.8% of the iterations (Table S6). The 

relationship between P100 amplitude and SSRT was positive. In the Successful Stop ERP, there 

was also one cluster with negative voltage at approximately 100 ms over occipital areas and one 

cluster at approximately 120 ms with positive voltage over centro-parietal areas. There were no 

identified clusters of more than two voxels that overlapped with spatio-temporal characteristics 

of the N200.  
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Time bin 
(ms) 

Cluster 
size 

Mean 
frequency (%) 

Mean 
voltage (V) 

Channels 
Associated ERP 

component 

Failed Stop 

257.8-285.2 24 17.1 -2.07 Pz, PO4, POz, P3, PO3, P1, O1 Dipole of P300 

125-144.5 11 13.1 -1.40 FC5, F3, Af7, F5, F7, FT7 
 

207-226.6 8 16.4 1.66 C5, T7 
 

277.3-285.2 7 17.9 3.17 FC3, FC1, F1, FC1, Afz P300 

207-214.8 7 7.3 -1.30 PO8, PO4, P4, CP6, P6, P8 
 

328.1-335.9 6 7.4 4.83 FCz, F2, FC4 P300 

203.1-210.9 6 3.9 1.11 Fp1, AF3, Fpz P200 

261.7-269.5 6 3.2 1.99 AF3, F1, Afz P300 

312.5-316.4 5 7.9 3.62 F1, Fz, F2, Af4 P300 

343.8-351.6 4 5.7 -0.75 CP5, P3, C5 
 

171.9-183.6 4 5.7 2.38 P1 
 

144.5-156.3 4 3.9 1.29 CP3, C3 
 

351.6-363.3 4 1.9 2.38 FC4 P300 

Successful Stop 

109.4-148.4 20 20.9 0.86 POZ, PZ, P2, CP2, CP1, C1, FC1 P100 

179.7-199.2 12 31.0 0.58 Fp1, Afz, Fp2, Af7, Af3 P200 

347.7-363.3 10 21.9 3.38 C4, CP4, CZ, C2 P300 

132.8-148.4 8 14.1 -0.99 T8, FT8, TP8  

285.2-293 7 5.1 1.26 Fpz, Fp2, Af4, F4, F2 P300 

101.6-117.2 6 4.4 -1.80 O2, PO4 N100 

265.6-277.3 5 24.7 0.12 FT7-C5  

109.4-117.2 5 23.3 -0.43 T7, FT7, FC5  

160.2-164.1 4 23.6 -1.09 FT8, T8, FT8  

386.7-398.4 4 12.1 -1.69 P8  

347.7-359.4 4 12.0 -2.59 PO7  

222.7-226.6 4 11.2 2.26 Cz, CPz P200 

269.5-273.4 4 6.0 -3.48 PO7, PO3, O1 Dipole of P300 

168-175.8 4 5.1 -0.48 Af7, Fp1  

144.5-148.4 4 4.6 -0.32 Fz, F2, FC2, F4  

332-339.8 4 2.1 -1.10 F5, Af7  

Table 4. Clusters of more than two voxels identified between 100 and 400 ms in the Failed and 

Successful Stop ERPs from the Full model. For the full list of clusters, see Table S3, S4, S12.  
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Figure 9. Topographic plots of the selection frequency at selected time bins between 100 and 

400 ms for the model including both Successful and Failed Stop ERPs. The color represents the 

selection frequency of the features (channel-time point pair) across iterations that survived the 

95th percentile threshold from the null distribution.  

 

3.2.4. Models without covariates 

To quantify the effect of including the age and sex covariates in the Successful Stop, Failed Stop 

and Full models, we fitted the same models without covariates and found similar results – see 

Supplementary Table S2, indicating that model accuracy did not depend on the inclusion of these 

covariates. 
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3.3. External validation 

The model including both Successful and Failed Stop ERPs showed the best performance in the 

internal validation dataset (see Table S2). This model, with 19,715 beta values, including the 

intercept, was tested on the validation set (n = 97). The Pearson’s r between the measured SSRT 

and the predicted SSRT derived from ERPs was 0.29 (p = 0.005; Figure S5). The data point with 

SSRT of 370.9 ms may be considered an outlier: after exclusion of this data point the correlation 

remained significant (r = 0.21, p = 0.044). A robust regression with all data also showed that this 

relationship was significant (slope = 0.17, p = 0.004). 

3.4. Mass-univariate approach 

In order to demonstrate the effect of type I errors (false positives), we first explored the data 

using an uncorrected significance threshold of alpha equal to 0.05 separately in the internal and 

external validation sets and quantified the overlap between both analyses. Of the significant 

features (voltage at each electrode at each time point) that survived the threshold in the internal 

validation set, only 32% were also significant in the external validation set. Similarly, of the 

significant features that survived the threshold in the external validation set, 31% were 

significant in the internal validation set. Thus, approximately two-thirds of significant features 

would fail to replicate when using an uncorrected threshold. In order to demonstrate the effect 

of type II errors (false negatives), we applied a correction for multiple comparisons based on the 

maximum statistic approach, which yielded a corrected alpha value for the internal and external 

validation sets of 7.37*10-7 and 2.01*10-6, respectively. No features in either set survived this 

correction.  

4. Discussion 

Here, we related individual differences between a behavioral measure of inhibitory control, SSRT, 

and electrophysiological activity recorded across the entire scalp and the ERP time-course from 

Stop trials. The use of machine learning facilitated the inclusion of more than 9,000 features per 

participant in order to assess the relationship of Successful and Failed Stop ERPs to SSRT. Notably, 
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the optimal features for predicting SSRT were widespread spatially, included early ERP activity, 

and included both lateral and midline electrodes, rather than being confined to the N200-P300 

complex over midline electrodes. A model that included both Successful and Failed Stop ERPs 

predicted SSRT more accurately than either condition separately, and these results were 

externally validated in a separate sample. ERPs from Successful Stop trials were better predictors 

of SSRT than ERPs from Failed Stop trials.  

4.1. Successful Stop ERPs predict SSRT 

ERP activity from Successful Stop trials reliably predicted individual differences in SSRT. We 

identified clusters with spatio-temporal features from 222.7 to 226.6 ms and from 347.7 to 

359.4 ms over frontocentral areas, which correspond with early and later P300 activity, 

respectively. The amplitude of the ERP in these clusters was negatively associated with SSRT (i.e., 

a higher amplitude was associated with a faster SSRT). These results are concordant with 

previous studies, which reported a negative association between the P300 amplitude and SSRT, 

by using either direct correlation (Hoptman et al., 2018) or a median split (Lansbergen et al., 

2017); however non-significant correlations have also been reported (Anguera & Gazzaley, 

2011). Anguera and Gazzaley (2011) reported a positive relation between the P300 onset latency 

and SSRT. This was confirmed by Wessel and colleagues who demonstrated that P300 onset 

latency is a better predictor of SSRT than peak latency or amplitude (Dutra et al., 2018; Wessel 

and Aron, 2015; Wessel et al., 2016). Although the timing of our first P300 cluster (starting at 

222.7 ms) was similar to Wessel and Aron’s (225.3 ms), our SSRT was faster (184 ms vs. 

227.5 ms), perhaps due to different response modalities between the studies. Nonetheless, the 

early P300 cluster in our results likely reflects amplitude changes in the ascending slope of the 

P300 component, with the later cluster related to the peak amplitude (see Figure S4 and S5).  

We identified features consistent with a right-frontal N200 component and we suggest this 

right lateralized N200 reflects individual differences in inhibitory control. The association 

between these features and SSRT was positive (i.e., more negative N200 was associated with 

faster SSRT) and these predictive features were only observed in the stop success condition. It is 



PREDICTING INHIBITORY CONTROL 

 29 

worth noting that participants in our study were all adults, and a right lateralized N200 is not 

typically observed in adults (see Wessel & Aron, p. 478). We did not find a frontocentral N200 

that related to SSRT. Unlike the consistent relationship between the P300 and SSRT, SSRT 

association with a frontocentral N200 is less well defined in the literature. Higher N200 amplitude 

(more negativity) in those with fast SSRT has been reported (van Boxtel et al., 2001; van Gaal et 

al., 2011). However, no association between the N200 and the SSRT has also been reported 

(Anguera and Gazzaley et al., 2011; Hoptman et al., 2018). These mixed findings may stem from 

the different choice in electrodes (typically, Fz and Cz, although van Gaal et al. included fronto-

lateral electrodes), in time windows (typically 180-250 ms, but van Gaal et al. defined a later 

window from 281-366 ms) and smaller sample sizes (n<42). Importantly, van Gaal et al. (2011) 

reported post-hoc correlations between the N200 amplitude across the scalp and the SSRT, and 

found higher values in right lateralized areas, which agrees with our findings. In summary, a data-

driven approach in combination with a large sample facilitated the inclusion of the entire ERP 

time-course and scalp, and the subsequent disentangling of the right lateralized and frontocentral 

N200.  

Although we found evidence of right lateralized N200 and P300 association with SSRT, the 

best prediction of SSRT was achieved by taking into account ERPs across the entire scalp before 

and after the N200-P300 components. Other machine learning approaches have reported similar 

findings. In a Go/No Go task, Stock et al. (2016; also Vahid et al., 2018) used ERP-derived features 

in a machine learning approach to predict if a person was accurate/slow vs. less accurate/fast. 

The right-frontal N200 and frontal P300 components did not discriminate between groups. 

Rather, features that discriminated between groups occurred at 145-210 ms over occipital areas 

for No-Go responses, at 350-440 ms over parietal-occipital areas for No-Go responses, and 250-

310 ms for Go responses. Similarly, we found that ERP features typically associated with SSRT, 

overlapping with the N200 and P300 components, were not the most important predictors, but 

rather earlier and later ERP features in parietal and occipital areas predicted SSRT (some of these 

predictors were the dipoles of the P300). 
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4.2. Failed Stop ERPs predict SSRT 

Most previous studies focused on Successful Stop trials to investigate inhibitory control, with 

relatively little attention paid to the Failed Stop ERP. We found that the Failed Stop ERP is 

predictive of SSRT, although not to the same extent as the Successful Stop model. We identified 

clusters that spanned the P300 temporal window, with higher P300 amplitude associated with 

better SSRT. Contrary to the Successful Stop model, we did not find any relationship between the 

N200 and SSRT in the Failed Stop trials. This suggests that the N200 and P300 components may 

reflect different processes following a failed stop: the N200, performance monitoring, and the 

P300, both performance monitoring and motor inhibition. It is worth noting that Dimoska et al. 

(2006) found significant correlations between the stimulus-locked N200/P300 and the response-

locked error-related negativity (ERN) and error positivity (Pe) on stop fail trials. In our adaptive 

version of the SST, which aims to produce 50% failed stop trials, failed responses will tend to 

occur shortly after the stop signal. The N200/P300 complex in the Failed Stop trials is therefore 

likely to incorporate the ERN/Pe complex and to reflect error processing. Future work may seek 

to better disentangle the N200/P300 from the ERN/Pe.  

4.3. Predicting SSRT with both Successful and Failed Stop ERPs 

The separate Successful and Failed Stop models were individually able to predict SSRT. However, 

the best prediction was achieved when using both the Successful and Failed Stop ERPs. After 

thresholding based on the null distribution, the surviving features of the Full model were similar 

to those from the separate models. Our results suggest that there is some unique variance in each 

Stop type that contributes to SSRT.  

The C4 electrode was predictive of SSRT in at 340 ms in Successful Stop ERPs in the Full 

model, a time period after the mean SSRT. It is likely that the activity in the C4 electrode reflects 

activity from the right motor cortex (Kuo et al., 2014; Pereira et al., 2017). Involvement of the 

motor cortex in inhibitory control has also been reported in a study using machine learning in a 

Go/No Go task (Vahid et al., 2018). Vahid et al. (2018) reported that the ERP activity from the C3 
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electrode (over the left motor cortex) at approximately 322 ms after No-Go stimulus presentation 

could predict with 68% accuracy if a subject was a good performer (i.e., with good accuracy and 

fast response) or a bad performer (i.e., with bad accuracy and slow response). Vahid et al. 

proposed that, since the C3 feature was before the mean Go RT, it reflected an inhibitory 

command in the motor cortex directly controlling the response (subjects needed to respond with 

their right hand/left motor cortex). However, the mean RT may be too late in the inhibitory 

process (mean: 489 ms in our data). In the SST, the behavioral proxy for inhibitory control is the 

SSRT (mean: 184 ms in our data). In the literature, it is a matter of debate if the P300 peak, which 

occurs between 300 and 400 ms after the Stop cue – and is shorter than the mean RT, reflects 

inhibition and not evaluative processes because it occurs after the SSRT (Huster et al., 2013). As 

such, we interpret our finding in the C4 electrode (the non-dominant hemisphere of most 

subjects) as a process of inter-hemispheric inhibitory maintenance, rather than a starting 

inhibitory command. The task we used – an adaptive stop signal task – challenges the inhibitory 

capacity of the participants, resulting in an objectively more difficult task (i.e., shorter SSDs) for 

participants with faster SSRTs than for those with slower SSRTs (D’Alberto, 2018). Activity in the 

non-dominant hemisphere and inter-hemispheric connectivity is increased with task difficulty 

(Rueda-Delgado et al., 2016). Therefore, we suggest that the predictive power of C4 is related to 

an increased involvement of the non-dominant hemisphere to maintain the inhibition of the 

dominant motor cortex, which becomes more crucial when the task is more challenging.  

4.4. Challenges of machine learning approaches 

We used penalized regression, which allows for more direct interpretation of the model estimates 

(unlike other approaches such as Random Forest). However, the best predictors of the SSRT in all 

three models were spatially and temporally sparse. Features outside the N200/P300 complex, 

which have been seldom investigated, were included in the machine learning method and were 

predictive of SSRT. Interpretation of such findings is a current challenge of machine learning 

applications in medical sciences (Woo et al., 2017).  
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4.5. Contribution to reproducibility debate 

There is growing concern about the utility of null-hypothesis significance testing (Trafimow et al., 

2018), reproducibility in science in general (Munafò et al., 2017) and cognitive neuroscience in 

particular. We demonstrated that a mass-univariate approach created false positives when 

multiple comparisons were uncorrected (Type I error), whereas correcting for multiple 

comparisons across the whole spatio-temporal space resulted in no features surviving the 

threshold (Type II error). When compared with a mass-univariate approach, machine learning 

identified features that correlated with SSRT and reproduced this correlation on previously 

unseen data. The advantages of a machine learning approach, like the elastic net used here, is that 

key features can be identified from a large search space, and correlated variables can be 

accommodated. Typically, the whole spatio-temporal space is not examined under EEG (with 

more than 32 channels), with analyses guided by previous research. In contrast, in our Full model 

we used almost 20,000 features per participant, many of which were highly correlated. Machine 

learning may be particularly useful for testing new paradigms because it does not restrict the 

analysis to specific time intervals or electrodes.  

Inhibitory deficits, such as those in addiction and ADHD or those observed during 

development and normal aging, are detectable with SSRT (Dawe et al., 2004; Lijffijt et al., 2005; 

Luijten et al., 2011; Winstanley et al., 2006). Therefore, the SST may be a valuable clinical 

measurement tool. However, in this study, we focused on healthy adults, thus, the resulting model 

may be suitable to that population exclusively. The true generalizability of the resulting model 

will need to be tested on populations with inhibitory deficits. Future research may also explore 

other approaches with higher or lower levels of interpretability, such as other generalized linear 

models, random forests, support vector machines or neural networks.  

In this paper, individual differences in inhibitory control were predicted using machine 

learning on a large dataset of ERPs from 64 scalp electrodes at resolution of 4 ms. We restricted 

experimenter degrees of freedom by retaining all the spatio-temporal information and using 

internal nested cross-validation to choose the final model parameters. Model performance and 
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feature relevance was elucidated by comparing the original model with a model created from 

random-label permuted data. Additionally, we tested the model on an external dataset, with 

similar performance. In addition to the well-established N200 and P300 components, early ERP 

features were also useful for predicting SSRT, and supports the idea that machine learning can 

yield new insights into the electrophysiology of inhibitory control. 
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Supplementary Material 

S2.1. Inclusion/exclusion criteria 

Data from four projects was pooled for this study. The distribution of the data per project 

is shown on Table S1. The exclusion criteria for each project is listed below. 

Project 
No. N 

mean 
age 

range 
Number 
females 

1 88 32 16-61 57 

2 40 21.13 18-29 16 

3 108 46.61 20-69 72 

4 46 25.72 19-60 30 

Total 282 35.03 16-69 175 

Table S1. Distribution of participants per project.  

 

Project 1: The focus of this project was to recruit first degree relatives of individuals with 

attention deficit/hyperactivity disorder and controls. The exclusion criteria included history of 

traumatic brain injury (e.g. concussion); medical conditions such as epilepsy; severe migraine; 

hearing and/or severe motor impairment; stroke and diabetes; psychiatric conditions such as 

psychosis, bipolar disorder, eating disorder, schizophrenia and personality disorder; learning 

and/or intellectual disability; current medication use of antidepressants (e.g. selective serotonin 

reuptake inhibitors (SSRIs)), benzodiazepines, antipsychotics or anticonvulsants.  

Projects 2 and 4: The focus of this project was to recruit healthy participants. The exclusion 

criteria included under 18 years old; accident causing blunt force trauma to the head; stroke 

patients; Receptive Language difficulties; consumption of cannabis regularly; alcohol or drug 

problems; learning or intellectual disability; mental illness; physical disability that might 

negatively affect the performance in the study. 

Project 3: The focus of this project was to recruit participants who smoke regularly. So the 

exclusion criteria included smokers of less than 5-10 cigarettes per day for the past 12 months; 
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smokers who had attempted to quit smoking during the past week; under 18 years old and over 

70; English proficiency of at least B1 standard of English proficiency on the CEFR framework; 

personality disorder or other serious psychiatric diagnosis; currently taking any psychoactive 

drugs (other than tobacco), cannabis, alcohol, eltroxin (levothyroxine) or SSRI anti-depressants; 

anybody who had trouble controlling their alcohol/cannabis/drug use, has any learning 

difficulties and has suffered an injury that caused 30 minutes or more of unconsciousness. 

S3.2.1 Event-related potential plots 

 

Figure S1. Grand average ERPs for the Failed and Successful Stop trials in selected channels over 

the frontal area. A positivity at around 300 ms (P300) is observed. Vertical dotted line indicates 

the 300 ms time stamp.  
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Figure S2. Grand average ERPs for the Failed and Successful Stop trials in selected channels over 

the right frontal area. A negativity at around 200 ms (N200) is observed. Vertical dotted line 

indicates the 200 ms time stamp.  

 

 

Figure S3. Grand average ERPs for the Failed and Successful Stop trials in selected channels over 

the parietal area. A positivity at around 100 ms is observed. Vertical dotted line indicates the 

113 ms time stamp corresponding to the time window for channel P2 that was selected 99.8% of 

the iterations.  
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a) Failed Stop 

 

b) Successful Stop 

 

Figure S4. Grand average ERPs for the a) Failed and b) Successful Stop trials in selected channels 

over the frontal area per quartile (Q) of SSRT. Vertical dotted lines indicate the 100 and 300 ms 

time stamp. Black dots indicate spatio-temporal features in the Full model that survived the 95th 

percentile threshold of the null distribution.  
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a) Failed Stop 

 

b) Successful Stop 

 

Figure S5. Grand average ERPs for the a) Failed and b) Successful Stop trials in selected channels 

over the parietal-occipital area per quartile (Q) of SSRT. Vertical dotted lines indicate the 100 and 

300 ms time stamp. Black dots indicate spatio-temporal features in the Full model that survived 

the 95th percentile threshold of the null distribution.  
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Figure S6. Grand average ERP in time bins close to 100, 200 and 300 ms for a) Successful Stops 

and b) Failed Stops.  
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S3.2 Models results 

 
 EEG + covariates EEG only 

 Successful 
Stop 

Failed 
Stop 

Full model 
Successful 

Stop 
Failed Stop Full model 

Original    
   

Average MSE 2577.5 2813 2536.2 2592.9 2843.4 2522.8 

SD MSE 99.5 99.2 109.3 99.5 97.7 108.4 

Average r 0.29 0.18 0.32 0.29 0.17 0.33 

SD r 0.041 0.044 0.042 0.042 0.039 0.041 

Null    
   

Average MSE 3005.2 2996.7 3073.8 2982.96 3005.8 3070.9 

SD MSE 175.4 163.8 184.5 134.4 154.4 176.2 

Average r -0.02 -0.03 -0.05 -0.03 -0.029 -0.041 

SD r 0.119 0.118 0.117 0.114 0.112 0.123 

Table S2. Mean square error (MSE) and Pearson’s correlation (r) of the original and null models 

using the Successful Stop data, Failed Stop data and joint Successful and Failed Stop data (Full 

model). These models were fitted including EEG data and covariates or including EEG data only. 

SD: standard deviation. 

 

Successful Stop  Failed Stop 

Channel 
Time bin 

(ms) 

Mean 
selection 

frequency 
(%) 

Beta 
value 

 Channel 
Time bin 

(ms) 

Mean 
selection 

frequency 
(%) 

Beta 
value 

intercept  100 183.96  intercept  100 183.97 

AF7 [191.4,195.3] 99.2 -4.4918  C6 [54.7,58.6] 97 -3.7096 

P2 [113.3,117.2] 97 5.8951  P9 [105.5,109.4] 96.2 -5.7453 

age  96.2 3.5007  P9 [437.5,441.4] 90.9 -2.7604 

AFz [570.3,574.2] 94.8 -5.3510  age  90 3.5177 

F2 [460.9,464.8] 94 3.5016  FC4 [7.8,11.7] 86.4 -2.6323 

F1 [460.9,464.8] 91.4 3.0217  Fp2 [46.9,50.8] 82.8 2.0983 

C5 [285.2,289.1] 86.6 -3.7836  FT7 [328.1,332.0] 81.1 1.9004 

F5 [363.3,367.2] 85.4 2.3534  Fp1 [492.2,496.1] 76.8 1.4600 

Fp1 [183.6,187.5] 84 -2.8045  Fp1 [199.2,203.1] 76.3 -2.2002 

P10 [144.5,148.4] 81.6 -2.3957  PO4 [281.2,285.2] 76.2 1.6592 

F3 [328.1,332.0] 80.2 2.4100  F1 [308.6,312.5] 75.9 -1.7881 

PO7 [371.1,375.0] 78.6 3.1033  C1 [0.0,3.9] 74.2 -1.4337 

T8 [128.9,132.8] 75.6 -1.2840  F3 [125.0,128.9] 68.2 1.2096 

F3 [496.1,500.0] 75.4 1.9547  FT7 [359.4,363.3] 67 1.3598 

FT7 [199.2,203.1] 75.2 -1.6154  FC2 [7.8,11.7] 64.6 -1.3832 

PO7 [265.6,269.5] 75 1.7559  P9 [210.9,214.8] 63.9 -1.1298 

C4 [351.6,355.5] 73 -1.4352  F7 [101.6,105.5] 60.6 1.2712 

P10 [148.4,152.3] 72.8 -1.9162  F7 [140.6,144.5] 60.5 1.1948 
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AF8 [421.9,425.8] 68.8 1.1477  CP6 [46.9,50.8] 58.5 -0.8742 

F3 [460.9,464.8] 61 1.1792  Fp1 [230.5,234.4] 57.7 -1.1036 

POz [109.4,113.3] 57.2 1.0765  FC5 [578.1,582.0] 56.1 0.8508 

C5 [265.6,269.5] 57 -1.0399  Fp1 [207.0,210.9] 55.5 -1.0656 

FT7 [109.4,113.3] 54.8 -0.7523  AF3 [15.6,19.5] 53.5 -0.7243 

C4 [355.5,359.4] 50.8 -0.9401  Fp1 [203.1,207.0] 53.4 -1.1347 

Table S3. Features with a selection frequency >50% across iterations in the Successful and Failed 

Stop only models.  

 

Time bin (ms) Cluster size 
Mean 

frequency (%) 
Mean 

voltage (V) 
Channels 

<100ms     

15.6-27.3 8 11.8 -0.31 Fp2, Af7, Fp1, Af3, Fpz 

11.7-27.3 5 20.1 -0.11 F6, FC6, C6 

70.3-78.1 5 15.6 -0.26 F7, F5, F3 

70.3-11.7 5 13.2 -0.25 FC6, C6, FT8, T8, TP8, P6 

7.8-11.7 5 11.2 -0.17 T8, TP8, P6 

19.5 4 11.0 0.52 P1, Pz, POz, PO4 

>400ms     

574.2-578.1 5 9.4 -1.42 POz, PO4, O2 

492.2-500 4 21.6 1.12 FC1, FC5, FC3 

585.9-589.8 4 16.8 -0.95 POz, PO4, P2 

437.5-441.4 4 13.3 -1.85 Af4, Af8 

585.9-589.8 4 6.6 -1.59 P6, P8 

Table S4. Clusters of more than three voxels identified before 100 ms and after 400 ms in the 

Successful Stop model.  

 

Time bin (ms) 
Cluster 

size 
Average 

frequency (%) 
Average 

voltage (V) 
Channels 

<100 ms     

70.3-82 12 12.8 -0.81 F7, FT7, FC5, F5, FC3, Af3, F1 

3.9-7.8 5 25.3 0.41 CP3, C1, CP1, Cz 

3.9-11.7 5 11.9 -0.36 Afz, Fp1 

7.8-11.7 4 39.2 0.20 FC6, FC2, FC4, C4 

46.9-50.8 4 26.8 0.40 C6, CP6 

15.6-19.5 4 20.8 -0.30 F1, F5, F3, Af3 

> 400 ms     

402.3-414 9 11.9 1.78 FC2, F4, FC4, C4 

488.3-496.1 6 9.7 0.44 P7, P5, CP3, PO7 

597.7-601.6 5 10.2 1.30 O1, PO3, Poz 

535.2-539 4 13.3 0.65 FCz, FC2 
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597.7-601.7 4 4.3 -1.44 F6, F2, FC4 

Table S5. Clusters of more than three voxels identified before 100 ms and after 400 ms in the 

Failed Stop model.  
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3.2.3 Full model 

Different 𝛼 and 𝜆 parameters were selected for each main fold within each of the 100 set 

assignments. We averaged the parameters across main folds and calculated the mean and 

standard error of the mean across set assignments. From this, the mean and SEM of 𝛼 were 0.7244 

and 0.0032, respectively, and the mean and SEM of the 𝜆 parameter were 5.559 and 0.046, 

respectively in the Full model.  
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Trial type Channel Time bin ms 
Selection 

frequency (%) 
Beta_value 

intercept   100 183.8421 

SubtractedSuccess P2 [113.3,117.2] 99.8 7.3970 

SubtractedFail C6 [54.7,58.6] 99.3 -3.9078 

SubtractedFail C1 [0.0,3.9] 95.2 -3.2858 

SubtractedSuccess F2 [460.9,464.8] 94.9 4.3714 

SubtractedSuccess AFz [570.3,574.2] 93.8 -4.2131 

SubtractedSuccess AF7 [191.4,195.3] 93.3 -3.0087 

SubtractedFail P9 [105.5,109.4] 91.4 -3.0003 

SubtractedSuccess Fp1 [183.6,187.5] 90.5 -3.3313 

SubtractedSuccess PO7 [371.1,375.0] 87.5 4.2395 

SubtractedFail FC4 [7.8,11.7] 86.7 -2.8128 

SubtractedSuccess F3 [328.1,332.0] 84.7 3.1098 

SubtractedSuccess F3 [460.9,464.8] 82.6 2.1106 

SubtractedFail FC5 [78.1,82.0] 81.9 1.7759 

SubtractedFail F7 [101.6,105.5] 78.7 1.9720 

SubtractedSuccess F5 [363.3,367.2] 72.8 1.7352 

SubtractedFail FT7 [66.4,70.3] 72.3 1.4353 

SubtractedFail FT7 [578.1,582.0] 72 1.3612 

SubtractedSuccess C5 [285.2,289.1] 71.2 -1.8167 

age   70.4 1.4762 

SubtractedSuccess FT8 [160.2,164.1] 70.2 -1.2530 

SubtractedFail F1 [277.3,281.2] 70 -1.2915 

SubtractedSuccess FT7 [109.4,113.3] 69.5 -1.2231 

SubtractedSuccess FC1 [132.8,136.7] 67.8 1.6783 

SubtractedSuccess P10 [144.5,148.4] 67.7 -1.4137 

SubtractedFail Fp1 [46.9,50.8] 65.5 1.1790 

SubtractedFail P9 [488.3,492.2] 63.2 -1.0383 

SubtractedSuccess Cz [351.6,355.5] 62.9 -1.1838 

SubtractedFail Fp2 [46.9,50.8] 62.8 1.1738 

SubtractedFail PO4 [257.8,261.7] 62.3 1.0844 

SubtractedSuccess C4 [351.6,355.5] 61.5 -0.9149 

SubtractedFail AFz [293.0,296.9] 59.6 -1.0800 

SubtractedSuccess F1 [460.9,464.8] 59.1 1.0247 

SubtractedFail P9 [210.9,214.8] 58.7 -0.8713 

SubtractedFail Pz [265.6,269.5] 56.5 0.8760 

SubtractedFail PO7 [488.3,492.2] 56.2 -0.8892 

SubtractedSuccess FC1 [136.7,140.6] 55.2 0.8971 

SubtractedFail CP3 [19.5,23.4] 54.2 -0.7684 

SubtractedSuccess AF8 [421.9,425.8] 52.2 0.7527 

SubtractedSuccess C4 [355.5,359.4] 51.5 -0.8225 

SubtractedSuccess Fp1 [187.5,191.4] 51.4 -0.8813 

SubtractedFail FC5 [125.0,128.9] 51.3 0.6595 

SubtractedSuccess FT7 [199.2,203.1] 51 -0.6938 

SubtractedSuccess PO7 [230.5,234.4] 50.8 0.6713 

SubtractedFail POz [265.6,269.5] 50.3 0.6690 

SubtractedSuccess P10 [148.4,152.3] 50.1 -0.8411 

SubtractedSuccess C5 [265.6,269.5] 50 -0.7488 

Table S6. Features with a selection frequency >50% across iterations in the Full model. Bold: 

Features that overlap with P300.  

 



PREDICTING INHIBITORY CONTROL 

 49 

Time bin (ms) 
Cluster 

size 
Average 

frequency (%) 
Average 

voltage (V) 
Channels 

<100ms     

3.9-11.7 13 24.2 0.24 FC3, CP3, C1, CP1, FCz, FC4, FC6, FC2, C4 

70.3-82 13 19.0 -0.86 F7, FT7, FC5, AF3, F5, FC5, AF7, FC3, F1 

93.8-105.5 8 13.5 -0.60 AF7, FT7, F5, FC5 

19.5-27.3 5 12.0 0.36 C3, P5, CP3, PO7 

7.8-11.7 5 1.4 -0.26 TP8, F8, FT8, T8 

15.6-19.5 4 5.8 -0.30 AF7, F3, F1 

>400ms     

492.2-496.1 4 21.2 0.38 P7, P5, PO7 

402.3-410.2 4 8.6 0.78 F4, FC4 

Table S7. Clusters of more than three voxels identified before 100 ms and after 400 ms in the 

Failed Stop ERP from the Full model.  

 

Time bin 
(ms) 

Cluster 
size 

Average 
frequency (%) 

Average 
voltage (V) 

Channels 

<100ms     

15.6-27.3 11 14.2 -0.30 AF7, FP2, FP1, AF3, F1, FPZ, AF7, AFZ 

11.7-23.4 4 19.1 -0.13 F6, FC6 

70.3-74.2 4 7.0 -0.26 FT8, C6, TP8, T8 

19.5-23.4 4 5.6 -0.25 F2, AF8 

46.9-50.8 4 5.6 -0.19 FT8, T8, C6 

19.5 4 5.2 0.55 P1, PO3, Pz, POz 

3.9-7.8 4 4.4 -0.10 Fz, F1, F2 

>400ms     

585.9-589.8 5 15.5 -0.92 POz, PO4, P2, P6, P8, CP6 

464.8-468.8 4 41.4 -0.43 F1, F3, F5, 

460.9-468.8 4 27.6 -0.85 F2, AF4 

574.2-578.1 4 3.4 -1.45 POz, O2 

Table S8. Clusters of more than three voxels identified before 100 ms and after 400 ms in the 

Successful Stop ERP from the Full model.  

 

We evaluated the relationship between the frontal and parietal-occipital channels during the 

Failed Stop ERP with Pearson’s correlations. Ten frontal and seven parietal-occipital channels 

were selected over the window from 256 to 286 ms. This resulted in 70 pairs tested in 8 time 

bins. We calculated the percentage of pairs that showed a correlation that survived a significance 



PREDICTING INHIBITORY CONTROL 

 50 

threshold of 0.05/8 (Bonferroni correction for 8 time points). More than 87% of the pairs 

survived this threshold (Figure S7, left).  

 

Figure S7. Percentage of pairs that survived a Bonferroni correction. Left: Percentage for the 

correlation between frontal and parietal-occipital channels during the Failed Stop ERP. Right: 

Percentage for the correlation between Successful and Failed Stop ERPs in frontal channels.  

 

We also calculated the correlation between Successful and Failed Stop ERPs in the frontal 

channels. We selected 10 frontal channels in the interval from 256 to 364 ms. This resulted in 100 

pairs from 28 time bins. After correcting for the time bins (p<0.05/28), up to 300 ms more than 

59% of channels have a significant correlation. After 300 ms, more than 44% of channels show 

this correlation (Figure S7, right).  
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S3.3. External validation results 

 

 

Figure S8. Predicted SSRT using the Full model from the cross-validation on the external 

validation set. 

 

Additional supplementary files 

Tables with full list of clusters with more than 2 voxels are shown in a separate Excel file for the 

three models (Table S9, S10, S12).  

A table with the full list of features, sorted by the mean selection frequency, from the Full model 

is in a separate Excel file (Table S11.) 

There are Supplementary Videos with the topographical plots across time of the beta map, the 

ERP and the selection frequency for the three models (Videos 1-12).  


