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Despite abundant research into the neurobiology of mental disorders, to date

neurobiological insights have had very little impact on psychiatric diagnosis

or treatment. In this review, we contend that the search for neuroimaging

biomarkers—neuromarkers—of mental disorders is a highly promising avenue toward

improved psychiatric healthcare. However, many of the traditional tools used for

psychiatric neuroimaging are inadequate for the identification of neuromarkers.

Specifically, we highlight the need for larger samples and for multivariate analysis.

Approaches such as machine learning are likely to be beneficial for interrogating

high-dimensional neuroimaging data. We suggest that broad, population-based study

designs will be important for developing neuromarkers of mental disorders, and will

facilitate a move away from a phenomenological definition of mental disorder categories

and toward psychiatric nosology based on biological evidence. We provide an outline of

how the development of neuromarkers should occur, emphasizing the need for tests of

external and construct validity, and for collaborative research efforts. Finally, we highlight

some concerns regarding the development, and use of, neuromarkers in psychiatric

healthcare.

Keywords: biomarker, neuromarker, machine learning, nosology, population neuroscience, big data, research

domain criteria, neuroimaging

INTRODUCTION

According to figures from the World Health Organization, the projected risk for developing some
form of mental disorder across the lifetime is between 18 and 55% (1). Globally, mental disorders
are the leading cause of years lived with disability (2). Thirty-eight percent of the EU population
is estimated to suffer from a mental disorder each year (3). In 2010, the estimated average cost of
addictive, anxiety, mood, and psychotic disorders was more than e3,500 per affected individual in
Europe (4). The corresponding figure for dementia was as high as e16,500 per individual. The
staggering economic cost and disability burden of mental disorders indicate that research into
improved prevention and treatment is imperative. Unlike most other areas of medicine, prolific
research in psychiatry throughout the past half century has not led to any substantial changes in
treatment approaches or in the conceptualization of diagnostic categories. The last major shift in
how mental disorders are treated occurred in the 1960’s with the introduction of psychoactive
medications, following the growing recognition that mental disorders have a basis in biology.
However, the neuropathological underpinnings of psychiatric conditions have little influence on
current healthcare practice, with both diagnosis and prognosis relying primarily on observed
symptoms or self-report.
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In this review we will explore this gap between
neuropsychiatric research and psychiatric healthcare. First
we will provide a general overview of how neuropsychiatric
research is conducted, in order to familiarize the reader
with the concepts referenced in later parts of the text.
Second, we will detail the criteria that must be fulfilled for
neuropsychiatric research to be clinically useful, introducing
the concept of neuroimaging biomarkers. Third, we will
highlight the key issues that have impeded the application
of insights gained from neuropsychiatric research into
applied psychiatric settings. Fourth, we will address these
issues and offer solutions. Fifth, we will discuss some of
the considerations which researchers and clinicians should
take into account when carrying out research with, or when
using biological models of mental disorders. Finally, we
will provide a summary and a set of recommendations for
neuropsychiatric research, to make it more clinically useful. A
glossary explaining some of the terms used in this review is
provided.

THE BRAIN AND MENTAL

DISORDERS—AN OVERVIEW OF

NEUROPSYCHIATRIC RESEARCH

METHODS

From the fallacious discipline of phrenology to modern
neuroimaging, researchers have hoped that understanding the
brain would provide explanations or justifications for behavior,
personality traits, cognition, and affect. The earliest knowledge
of the connection between brain and behavior comes from
post mortem examinations and studies of patients with brain
lesions. A famous example is the case of Phineas Gage, whose
personality changed dramatically after an iron rod passed
through his skull and destroyed much of his frontal lobe.
Cases of dramatic changes in patients who experienced brain
lesions were the first evidence that some brain functions rely on
specific brain areas. With the advent of non-invasive imaging
technology, neuroscientists have no longer had to rely on lesion
studies to explore the neurophysiological basis of cognitive
functions, behavior, and pathology.Magnetic Resonance Imaging
(MRI) is a non-invasive imaging technology which provides
clinically useful images of internal tissue and organs. MRI
scanners have been used since the 1980s and are available
in almost all hospitals in the developed world. MRI can be
used to examine brain structure and to measure gray and
white matter volume in the brain. Functional MRI (fMRI)
has been used for brain imaging since the early 1990’s, and
has provided many valuable insights into psychopathology,
cognition, and behavior (5–7). fMRI utilizes regional blood-
flow in the brain to infer neuronal activity via the blood-
oxygen-level dependent (BOLD) signal. Most fMRI studies
manipulate some variable of interest, such as the visual or
auditory stimuli individuals are exposed to, and examine the
difference in BOLD signal specifically associated with that
variable. These studies can reveal how activations in specific brain

regions are associated with certain types of sensory or cognitive
processing.

There is a rich neuroimaging literature examining psychiatric
pathology. Psychiatric neuroimaging research typically involves
a group of patients, and a group of healthy control participants
(normally matched to the patient group in terms of various
demographic characteristics). These are compared in terms
of their brain structure or function. The typical sample size
of a neuroimaging study from a single laboratory does not
exceed 100 participants. In contrast, neuroimaging datasets
typically include hundreds—if not thousands—of voxels (see
Glossary) or regions of interest (ROIs, see Glossary), particularly
when data from multiple modalities are used (such as
MRI and electrophysiological recordings or positron emission
tomography). MRI and fMRI data are usually analyzed by
carrying out statistical significance tests on each voxel. This
type of analysis is referred to as mass-univariate analysis, as
it involves conducting a massive amount of tests for each
analysis. When groups of patients and control participants
are being compared, an ANOVA or t-test (see Glossary:
Inferential Statistics) will usually be carried out at each voxel.
To account for the high risk of false positive findings (see
Glossary), mass univariate analyses are ordinarily reported
using corrected statistical significance thresholds. This approach
has produced important insights into the neuropathology
underlying many psychiatric conditions including addiction
[e.g., (8)]; schizophrenia [e.g., (9)]; social anxiety disorder
[e.g., (10)], Attention deficit hyperactivity disorder [ADHD;
e.g., (11)], and anorexia nervosa [e.g., (12)]. However, there
are considerable issues in terms of reliability, generalizability,
and reproducibility with this type of analysis framework
in terms of identifying neuromarkers (see Glossary). We
outline the problematic elements of this approach in the
section Barriers to the Use of Neuromarkers in Applied
Psychiatry.

Summary
In this section we provided a brief outline of how
neuropsychiatric research investigating mental disorders is
often carried out. In the past two decades MRI has become
the main tool used to investigate brain structure and function.
Mental disorders are usually studied by comparing a group
of individuals diagnosed with the mental disorder to a group
of healthy control participants. Groups are then compared
using mass-univariate analyses to investigate possible group
differences.

BIOLOGICAL MODELS IN

PSYCHIATRY—WHAT THEY SHOULD

LOOK LIKE

In this section we will first outline why biological models (see
Glossary) would be beneficial in psychiatry, introducing the
concept of biomarkers. Subsequently we will describe some of the
key characteristics which a useful biomarker must have.
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Biomarkers and Why Psychiatry Needs

Them
As previously noted, diagnoses of mental disorders are based
on observed and/or self-reported symptoms, which are highly
heterogeneous within, and often common across disorders (13).
The absence of clear and distinct disorder phenotypes and a high
rate of comorbidity of psychiatric disorders pose a considerable
challenge to clinicians when it comes to selecting a treatment
pathway from which the patient is most likely to benefit. In
other domains of medicine, predictive models for estimation
of treatment efficacy, risk assessment, and prognosis are
routinely employed by medical professionals, and advocated by
policymakers (14). Over the last decade, for example, cancer and
heart disease are two specific areas in which biologically based
(predictive) models, or biomarkers, have been used for purposes
of screening, diagnosis, staging, prognosis, treatment selection,
and monitoring (15–17). Rather than replace the clinician, these
biomarkers provide a measure that can supplement clinical
decision-making (18, 19). This affords patients and healthcare
providers the opportunity to implement preventative measures
in high-risk patients, to identify a disease in its early stages,
aid differential diagnosis, select treatment pathways that are
most likely to benefit the patient, and to make a well-informed
prognosis about treatment outcome and disease course. Being
able to estimate the likelihood that a patient will respond to
a particular treatment is the basis for precision medicine, and
for the integration of diagnosis and therapeutics [“theranostics,”
(20)]. Based on predicted treatment response or disease course,
clinicians can personalize treatment plans and avoid or delay
costly, arduous, and possibly ineffective treatments. This would
have a great impact on the quality of life of patients, and on the
economic and personal cost of healthcare to the individual and
society.

In order to be clinically useful, a biomarker needs to
augment existing diagnostic/prognostic criteria. That is to say,
the estimate of a future event (or current condition) based on the
biomarker, or adding the biomarker to current methods, needs
to be better than the estimate based on current methodology
alone. A key element of why biomarkers are so desirable
in medicine is that they provide an objective estimate. This
has the potential to reduce bias in clinical decision making.
In psychiatry, the incorporation of biological evidence into
diagnosis, prognosis, and treatment selection could improve
the quality of healthcare which patients receive (21). The
National Institute of Mental Health acknowledged this in
their “Research Domain Criteria” (RDoC; www.nimh.nih.gov/
research-priorities/rdoc/index.shtml) almost a decade ago. The
RDoC framework assumes that (1)mental disorders are disorders
of brain circuits, (2) neuroscientific methods can identify these
dysfunctions in vivo, and (3) genetic and imaging data will yield
biomarkers that can augment clinical management (22).

What a Biomarker Should Look Like
In practical terms, a good biomarker needs to be workable—it
must be reasonably simple and quick to obtain the data necessary
to compute the biomarker, so that clinicians can realistically

implement the measures in assessments (13). It is easiest to
implement unimodal models (see Glossary) in new settings, as
they do not require multiple imaging protocols or modalities. A
measure that is easy and practical to include in an assessment
protocol should also be low in personal and economic cost.
Paying for an MRI scan for the sake of a small improvement
in diagnostic accuracy may not be worthwhile. Yet, as Gabrieli
et al. (21) point out, a neuromarker may provide sufficient
improvement in diagnostic or prognostic accuracy to be a cost-
effective option. If the human and economic cost associated
with delaying treatment or administering a treatment that is
ineffective can be prevented or reduced, then administering an
MRI may be more economical than the alternative. However,
Gabrieli et al. (21) also note that to be clinically useful the
question that must be answered is not solely whether one
particular treatment is likely to work, but which treatment out of
a number of treatment options is likely to be the most beneficial
for the patient. Another practical concern is that the imaging
protocol necessary for calculation of the neuromarker must be
robust to slight deviations in data collection or preprocessing
procedure. That is to say, broadly similar results should be
obtained when different clinicians or professional health-care
providers administer the test, or when different participants
view similar stimuli thought to engage the same sensory or
cognitive processes (23). Furthermore, a good biomarker must
have good construct validity. A classifier which purports to
identify individuals with Alzheimer’s disease should also perform
reasonably well identifying individuals with mild cognitive
impairment, but should have no relevance when separating
unipolar from bipolar depression.

Summary
In this section we have contended that the integration of
neuromarkers into the diagnosis and treatment of mental
disorders would be of great benefit to both patients and clinicians.
Considering the high economic and personal cost of mental
disorders, neuroimaging biomarkers may prove to be valuable
and cost-effective. Useful biomarkers must be easy to implement
in new settings, and have good external validity.

BARRIERS TO THE USE OF

NEUROMARKERS IN APPLIED

PSYCHIATRY

Reasons and possible solutions for the discrepancy between
neuroscientific research and clinical applicability have
been discussed by many researchers and clinicians (20–
30). Four areas are consistently identified as targets for
improvement in translational neuroscientific research: (1) the
statistical approaches used in neuroscience, (2) the need for
larger population-based samples, (3) a lack of mechanistic
understanding of psychiatric neuropathology, and (4) the need
for a move away from the often ill-defined phenomenological
(see Glossary) diagnostic criteria in psychiatry. In this section
we will address each of these areas, outlining why they pose
a threat to the clinical applicability of neuroimaging research.
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Solutions to these issues will be put forward in the subsequent
section.

Statistics and Study Design
Most neuroimaging studies use group differences to infer
characteristics of neuropathology. While the knowledge of how
brain structure and function differs between patient populations
and control subjects is valuable in terms of understanding disease
mechanisms, making inferences about cognitive or affective
processes based on observations of brain structure or function
(i.e., reverse inference) is problematic (31). However, a key
reason for the inability of neuroscientific insights to translate
into clinical practice is the reliance on the results of inferential
statistics (see Glossary) to determine the relevance of results,
which does not necessarily translate into clinical relevance. In
an applied setting only those variables that can generate some
information about the outcome of interest for an individual
patient—whether this is the projected disease course or simply
whether or not a patient fits into a specific diagnostic category—
are useful. Statistical significance between groups is quantified
based on group means and within-group variance [see (32) for
a discussion]. Differences will therefore be strongest between
groups with high within-group homogeneity. Good predictors,
on the other hand, capitalize on heterogeneity within the entire
sample to generate an outcome estimate. While variables that
significantly differ between groups may also be good predictors,
this is not necessarily the case, and vice versa (20, 23, 32, 33).

Another concern regarding current statistical standards
in neuroscience is the reliance on mass-univariate analyses
to determine statistical significance of results. Considering
each voxel in isolation assumes a level of extreme localized
functional specialization that does not reflect the network-based
neurophysiological underpinnings of cognitive functions and
clinically relevant outcomes (34). The inherent connectedness of
neuroimaging data necessitates that determining the predictors
of a cognitive, behavioral, or clinical outcome should examine
any interaction effects between brain regions. Examining a
single cluster of voxels or a single brain region is rarely very
informative. Multivariate, as opposed to univariate analysis
procedures encompass the simultaneous analysis of more than
one independent variable. In the context of neuroimaging
research this typically takes the shape of multivariate (or multi-
voxel) pattern analysis or regression analyses embedded within a
machine learning approach. Most of these can be grouped into
(1) classifiers or logistic regression approaches, and (2) linear
regression approaches. Multivariate statistical tools have been
incorporated into neuroimaging research more and more in the
past decade (34). However, there is an additional concern when
using multivariate methods. Neuroimaging data are expensive
to acquire (approximately e750 per hour) and consequently
sample sizes in neuroimaging research are generally quite small.
The number of input variables in a neuroimaging datasets often
exceeds the number of observations (i.e., sample size). When this
is the case, predictions are at a high risk of being overly optimistic
(35). This occurs when a model fits to the idiosyncrasies of the
sample rather than factors that are common to the population
from which the sample is drawn. This is generally referred

to as “overfitting” [see (36) for an overview of this issue in
neuroimaging]. Overfitting leads to models producing very good
predictions on the sample they were created with, but that then
generalize poorly to other samples from the same population.

Understanding Mechanisms
Besides improving the accuracy of clinical judgements, biological
models of psychiatric illness have the potential to illuminate the
neurobiological mechanisms of disease etiology and recovery.
However, at least some understanding of neuropathology is
necessary to create good neuromarkers (34). In the psychological
tradition, most mental disorders are associated with at least one
theoretical model of the component processes and functions
associated with maladaptive behavior, cognition, or affect. Such
models can be applied to neuroimaging data to examine
associations between brain structure or function and theoretical
components of the model [e.g., (37)]. This approach has the
potential to illuminate certain aspects of neurobiology in the
light of the psychological model, but rests on the assumption
that the model reflects a cognitive process accurately (38). The
majority of theories about maladaptive behavior or psychiatric
pathology combine neuroscientific evidence with assumptions
about the psychological processes that they influence or support.
Theoretical models can emerge from neuroscientific evidence,
or neuroscientific evidence can lead to the confirmation or
reconsideration of already established psychological models. An
example of neuroscientific evidence leading to a reconsideration
of a theoretical model comes from the field of addiction,
where increased availability of neuroimaging research led to an
alteration in how the role of reward processing was viewed (39).
This example shows that the state of understanding disorder
mechanisms depends both on the available neuroscientific
evidence, and on the available theoretical models of a condition.

Another issue regarding the understanding of disorder
mechanisms emerges with the use of multivariate statistics.
While the variables (“features”) which are included in the model
may be determined by the current understanding of disorder
mechanisms, the model building process itself will be divorced
from the theoretical understanding of the condition. This makes
it important that neuromarker models be interpretable. That is
to say, it must be possible to determine whether a neuromarker
model is neurophysiologically plausible (34). As Woo et al. (34)
put it, it is difficult to know when and why a model will fail if
it is not understood why it works in the first place. However,
constructing good interpretable models from neuroimaging data
is not an easy feat. The machine learning tools which have been
adopted by neuroimaging researchers typically come from fields
such as computer science or engineering, where the importance
that is placed on model interpretability is much lower.

Psychiatric Nosology
Nosology in psychiatry does not have a biological basis, and
incorporates no knowledge about neuropathology. Evidence-
based efforts to redefine diagnostic categories have been
made using cluster analysis (see Glossary). Leaning on the
psychological history of clustering psychiatric populations based
on neurocognitive and affective symptoms, a phenomenological
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subclassification of a population can be achieved. This can then
be linked to neuroimaging data to reveal possible biological
subtypes of the disorder. An example where neuromarkers could
be useful is the case of bipolar disorder and schizophrenia.
These disorders are distinct in terms of their diagnoses (40)
but may in fact have a shared etiological pathway (41, 42).
Both these disorders pose a considerable challenge in terms
of differential diagnosis, as they have substantial commonality
in their symptomatology (see Glossary). There is considerable
evidence that biological subtypes of mental disorders may not
necessarily correspond to diagnostic categories [see also (43, 44)
for a discussion of biological subtypes in ADHD]. However,
this knowledge alone has limited clinical applicability because
no relationship to disorder etiology, treatment outcome, or
disorder trajectory was established. Nevertheless, it is crucial
to consider that neuromarkers may be unattainable when
working with disorders based on phenomenology and current
diagnostic categories [RDoC; (45)]. Therefore, the goal of the
RDoC is a diagnostic system in psychiatry which is based
on an understanding of the biological and psychosocial basis
of mental illness (45). Many researchers have asserted that
the unreliable (46) symptom-based stratification of mental
disorders has prevented progress in determining the etiology
and pathophysiology of mental disorders (20), and that nosology
should be recast in more biologically meaningful terms, based on
neuroscientific evidence (20, 47). An important consideration is
that any categorization of disorder subtypes based on biological
data will likely impose artificial boundaries upon the spectrum of
disease pathology and symptomatology. Therefore, a biological
redefinition of disorders must reflect the concept that biological
indicators of pathology are likely to exist on a continuum.

Summary
In this section we have outlined the central problems
which have led to neuroimaging research largely failing to
generalize to clinical psychiatric practice. A fundamental
issue in neuroimaging research is the mass-univariate analysis
framework often used. When moving to multivariate approaches
it is important to remain mindful of the danger of overfitting.
Overfitting is more likely to occur when sample sizes are too
small or when the number of variables is too large. Furthermore,
neuroimaging models should be interpretable, to ensure their
neurophysiological plausibility. Lastly, it is problematic to rely
on current diagnostic categories when creating neuroimaging
models of mental disorders, as these categories are often ill
defined.

NEUROMARKERS—A RECIPE

In this section we will address the challenges raised in the
previous section. We will address each point by describing
methods which are already being used in the field to improve
neuromarker research. This section will be structured to follow
the lifecycle of neuromarker development, focusing on the
following elements: Study design, analysis frameworks, statistical
tools, the extended development pipeline of a neuromarker, and

an example of a neuromarker which has already progressed
through much of this developmental pipeline.

Study Approaches
Dubois and Adolphs (23) likened big data in neuroscience to
accelerators in particle physics or telescopes in astronomy—a
necessary tool for scientific progress [for a discussion of the
role of big data in psychiatry see also (30)]. Large samples are
achievable through multi-site imaging initiatives and consortia
like the Alzheimer’s Disease Neuroimaging Initiative [ADNI,
(48)], IMAGEN (49), EU-AIMS (50, 51), the Adolescent Brain
Cognitive Development Study (NIH), the Human Connectome
project (52), and ENIGMA (53). However, not all data from
these initiatives are publicly available. Another option to
achieve large sample sizes is data-sharing, possible through
data-sharing facilities such as NeuroVault [neurovault.org, (54)]
and OpenfMRI [openfmri.org, (55)]. While utilizing data
from multiple laboratories and multiple geographic locations
contributes to the validity and generalizability of models,
collapsing data across multiple data collection sites is a non-
trivial task that can introduce additional confounding factors
(24). While complex, it is possible to combine data from
multiple data collection sites into a well-performing model
(56). Large datasets facilitate a population-based approach to
neuromarker research. Large studies like IMAGEN not only
gather neuroimaging data, but also gather information on
genetics, demographics, and life history. This makes it possible
to examine psychopathology in a holistic manner (57), under the
rubric of “population neuroscience.” By taking into consideration
information from other domains, neuromarkers can more
meaningfully contribute to our understanding of the etiology of
psychopathology.

Many large datasets include participants with a wide range
of symptoms. Yet, studies using these data to identify neural
signatures associated with mental disorders often select a fairly
narrow subset of cases and matched controls. Studies using well-
defined and clearly distinct groups are able to classify between
patients and controls or between patient groups. However, the
context in which knowledge gained from such classification
studies is useful must be carefully considered at the outset of
designing such a study. For example, a classifier which can
differentiate between patients with schizophrenia and patients
with bipolar depression with high accuracy only has clinical
utility when it is applied to a patient who is already known
to fall into either of those groups. If however the individual
were suffering from unipolar depression the outcome of the
classifier would have little meaning. Although strictly controlling
for variables such as age, socio-demographic circumstances,
symptoms, or medication use gives the experimenter greater
control and greater clarity over the source of an effect, restrictions
on study inclusion also restrict the utility of findings. That
is to say, stricter inclusion criteria also narrow the range of
circumstances in which a model will be useful and applicable
(34). Considering this restriction on how amodel can be useful in
practice, the models and neuromarkers that will have the highest
clinical significance will be models that take into account the
heterogeneity within the population, and ideally define pathology
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in a continuous rather than binary fashion (19, 20, 34). This
is particularly important when attempting to predict clinical
outcomes such as future psychopathology. Large datasets make it
possible to create neuromarkers that provide information about
how an individual’s brain activity differs from the population
average. This provides insight into how linear variations in brain
structure and function are associated with changes in a variable
of interest on a spectrum which includes the population-mean
and pathological manifestations. In comparison to case-control
studies, this individual-difference approach would mark a move
toward creating neuromarkers for certain symptom clusters or
processing domains, rather than for specific diagnoses.

Attempting to identify neural signatures of individual types
of processing or behavior can be seen as a “component process”
approach [(34), p. 371]. This would ideally result in a set of
models which capture brain structure or function associated with
a particular variable that linearly varies across the population.
A number of such models could then be combined to identify
specific populations. This approach would be very valuable
in terms of risk assessment, such as early identification of
adolescents at risk for future psychopathology. An example of
this could be ADHD and substance use disorder. Both individuals
with ADHD, and individuals with substance use disorder often
show poor inhibitory control. A neuromarker that measures
inhibitory control should therefore provide similar estimates for
these two groups. Identifying an adolescent’s level of inhibitory
control based on a neuromarker can therefore provide a measure
of risk of maladaptive behaviors involving poor inhibitory
control. The component process approach is thus very well-
suited to addressing certain types of research questions, such as
general risk for maladaptive behavior. Applying the component
process approach to other questions, such as predicting response
to treatment, may however prove challenging.

Analysis Frameworks and Statistical Tools
To be valuable in an applied context, neuromarkers need
to provide information about a variable of interest. Such
models necessitate knowledge of an outcome category or
score corresponding to each dataset. In machine learning
terms, this type of analysis is known as supervised learning.
As previously noted, the metrics that we currently use to
delineate and define mental disorders may not be ideal. A
true redefenition of diagnostic categories and disease entities
based on biological data, as advocated by the RDoC, requires a
different approach. In machine learning, unsupervised, or data
mining approaches work independently of outcome categories
or dependent variables, attempting to cluster the data into
coherent groups based on the information provided. In the case
of psychiatric neuroimaging this takes the form of grouping
participants into sub-categories based on their brain structure
or function, independent of symptomatology. An example of
this approach comes from the field of ADHD: Costa Dias
et al. (58) examined resting state functional connectivity in
a sample of 106 children, 43 of which were diagnosed with
ADHD. This study identified three ADHD neurotypes (see
Glossary) characterized by differences in functional network
structure. It is feasible that the neurotypes identified in this

study might represent distinct etiological pathways. Since the
neurotype groups also differed with regard to impulsivity and
activity level, the core deficits in these groups appear to be at
least partially distinct, making it likely that treatment approaches
may differ in terms of success between neurotypes. Clustering
studies that have direct clinical utility link neurotypes to clinically
relevant outcomes. An early series of studies combined cluster
analysis with prediction of treatment outcome in a group of
cocaine users (59, 60). These studies found that unsupervised
clustering of resting-state electroencephalography data could
group cocaine users into groups which differed in terms of
the length of their stay in a treatment facility. The neurotypes
discovered in this study have no ability to reveal etiological
pathways, but they do provide some evidence of neurobiological
characteristics associated with recovery, which is an equally
important aspect of psychiatric neuropathology. In contrast, a
more recent study linked treatment outcomes in depression to
neurotypes (61). This study was able to identify clear differences
in likelihood of certain symptoms presenting and overall disorder
severity between neurotypes, thereby creating a link between the
biological disorder subtypes and clinical presentation.

Given a known outcome variable, such as treatment success,
neuroimaging research has typically employed group-difference
analyses to identify factors associated with this outcome.
Recognition of the limitations of this approach has led a large
number of authors in psychology and neuroscience to emphasize
the importance of moving away from explanatory and univariate
analysis procedures and toward multivariate outcome prediction
(21, 31, 34, 62). In the past decade the number of neuroimaging
studies using multivariate methods has grown rapidly (34), and
there is a strong recognition of the importance of this approach
[(30, 62–64)]. The divergence of findings using classic univariate
compared tomultivariate methods is demonstrated by two recent
meta-analyses summarizing neuroimaging studies of unipolar
depression: There was a notable lack of significant differences
in brain activity during emotional or cognitively challenging
tasks associated with unipolar depression using traditional group
comparison studies (65); However, a meta-analysis of studies
using a multivariate approach to classify patients with major
depressive disorder and healthy control subjects found an average
classification accuracy of around 75% for functional MRI (66).

Supervised learning using multivariate models requires a
particular set of statistical tools that departs strongly from the
traditional group-difference approach. When using multivariate
analysis methods, it is of great importance that the analysis
protocol include some measures to prevent overfitting. The most
fundamental of these is that a model must be tested on a
previously unseen sample in order to obtain a realistic estimate of
model accuracy. This step is crucial, as it is the most effective way
to gauge how well a model will perform with other individuals
from the same population. Using a separate dataset is the gold
standard in terms of assessing external validity. However, a more
easily accessible method is cross-validation (CV). One of the
most frequently used methods is leave-one-out CV [LOOCV;
e.g., (67–69)], or leave-k-out CV [e.g., (70)]. A somewhat less
computationally expensive method is k-fold CV (e.g., (71)].
When using CV it is imperative to ensure that the observations
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used to validate the model (the test set) remain statistically
pure and do not at any point overlap with the observations
used to create the model [the training set; (72)]. Another tool
that is important in quantifying in-sample generalizability is
bootstrapping. Bootstrapping improves the stability of a model
by randomly sampling the dataset with replacement multiple
times in order to minimize the effect of outliers and estimate the
true population mean (73). In particular, bootstrapping provides
a measure of how reliable and consistent coefficient estimates
or feature metrics are with datasets that have a low signal-to-
noise ratio (see Glossary) and high multicollinearity. Bootstrap
aggregation (bagging) has previously been used with large genetic
datasets, and showed significant improvements over standard
(non-bagged) methods in terms of model accuracy and stability
(74). Both cross-validation and bootstrapping can be considered
“resampling” procedures, and are standard tools used inMachine
Learning.

Another important step which should be implemented
when working with high-dimensional neuroimaging data is
dimensionality reduction. Dimensionality reduction simply
refers to the reduction of the number of variables that will be
used to create a model. Dimensionality reduction approaches
can be broadly categorized into “feature selection,” and “feature
extraction” methods. Feature selection takes the existing input
features and strategically removes those features that will, or
are most likely to, contribute little to the accuracy of the
model. Feature selection methods can be categorized into filter
methods, wrappermethods, and embeddedmethods. These differ
in terms of how the selection of features included in the
regression model and model optimization (or learning) interact.
Filter methods rank all brain inputs by factors such as their
correlation with the target variable (i.e., prediction accuracy),
and the most informative variables are selected. This is often
used to initially reduce the size of datasets before other feature
selectionmethods are used.Wrapper methods (75) use a learning
machine (e.g., sequential search algorithms) to evaluate the
quality of subsets of features [see (70)], thereby accounting
for the importance of feature interaction effects. In contrast
to filter and wrapper approaches, model building and feature
selection cannot be separated in embedded methods. Some of
the most common embedded feature selection algorithms are
regularization methods, which penalize model complexity as a
part of function optimization. Examples of thesemethods include
Ridge, Lasso, and Elastic Net regularization (76). The Elastic
Net has gained popularity among neuroimaging researchers in
recent years, and has been successfully used in a number of large
studies [e.g., (71, 77)]. While the method of feature selection does
not seem to make a difference for large genetic datasets (78),
embedded methods have been shown to be more effective than
filter methods with certain neuroimaging classification problems
(79). A more in-depth discussion of filter and wrapper methods
can be found in Chandrashekar and Sahin (80), and Mwangi et
al. (81) provide a review of feature selection techniques and their
application to neuroimaging data.

In contrast to feature selection, feature extraction methods
such as principal component analysis (PCA) and independent
component analysis (ICA) are very familiar to neuroimaging

researchers. Data scientists in other domains routinely use
feature extraction techniques to map features onto higher-level
summary variables to reduce the dimensionality of the dataset.
Feature extraction always involves creating a new set of features
from the original input variables, which normally makes the
model difficult to interpret. It is therefore very complicated to
evaluate whether a model is neurophysiologically plausible when
feature extraction methods are used. While feature extraction
methods often results in an improvement inmodel accuracy, they
have largely been avoided by neuroimaging researchers when
seeking to identify neuromarkers. However, there have been
some advances that capitalize on the improvement in accuracy
which can be gained from feature extraction methods, while also
mapping results back onto the original feature space (82).

In addition to feature selection and feature extraction, it is also
possible to manually create summary variables based on domain
knowledge. This is referred to by Hahn et al. (13) as “feature
engineering.” Feature engineering is a supervised form of feature
extraction that capitalizes on the researchers’ domain knowledge
to create features that represent the underlying problem in a
superior way. While this approach holds promise in that it
makes it possible to integrate previous knowledge and theoretical
understanding of a disorder directly into the model building
process, we believe that some caution is warranted. In the same
way that our current understanding of the neurobiological and
psychological processes underlying mental disorders depends
both on the state of the neuroscientific evidence and on the
available theoretical frameworks, there is a danger that feature
engineering may bias findings toward results that support a
particular theoretical model of neurobiological processes. At the
very least researchers should be aware of this caveat, and clearly
communicate that their analysis framework is not purely data-
driven, but incorporates at least some elements of theory-driven
analysis (83).

Finally, despite efforts to guard against overfitting, there
may nevertheless be a degree of unwarranted optimism in any
model. Establishing whether a model produces results that are
significantly better than chance is therefore not possible using
traditional p-values. Rather, an empirical significance threshold
should be established using a null model (i.e., a model against
which the observed data can be compared to determine the
likelihood that any observed effect could have occurred by
chance). A commonly used approach to generating null model
data is a simple randomization of the dependent variable across
participants (random label permutation). Other approaches to
constructing null models and null data include randomizing
input data, and use of only nuisance covariates (23). The level
of accuracy achieved by the analysis framework using this null
data is compared to the accuracy of the model with real data, and
this acts as a measure of the optimism inherent in the analysis
framework.

The Neuromarker Development Pipeline
The developmental pipeline for neuromarkers in psychiatry
should be very similar to the standard drug development pipeline.
Woo et al. (34) and Moons et al. (19, 84) have laid out
this developmental pipeline for biomarkers, making specific
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recommendations and providing a tangible way to evaluate how
close to clinical applicability biomarkers are. The number of
participants required increases the further along the road to
clinical applicability amodel is (34, 84). Initial exploratory studies
typically have small sample sizes and modest resources, but the
findings from these studies can be used to justify investing a
higher amount of resources for further research and development
(21, 34). At this stage it is advantageous to pursue many different
avenues in terms of modalities and functional tasks in order
to find the approach that best predicts the outcome. Generally,
the most efficient approach to biomarker development will take
into consideration what we already know at every stage of the
development pipeline (19). In the initial stages of neuomarker
research this may take the shape of selecting functional imaging
tasks to use based on previous research. When analyzing the
data, this may include the use of targeted feature engineering as
suggested by Hahn et al. (13), taking into account the caveats of
this approach. Woo et al. (34) estimated that around 450 models
in the exploratory stage of development had been published in
January 2016 relating to mental disorders (excluding substance
use).

After the initial creation of a biomarker, the next step
is the application of the model to an independent sample.
This serves the purpose of initial generalizability testing. Woo
and colleagues estimate that only around 40 neuromarkers
have been validated using independent samples. Jollans and
Whelan (62) provide a summary of some of these studies
from the domains of major depressive disorder (85), psychosis
(86–88), and dementia (89–91). Only two neuromarkers were
identified by Woo et al. (34) that had also been validated
using data from another data collection site. One of these
is the SPARE-AD classifier (89), an overview of which is
given below. Biomarker models should be treated as shareable
research product, to be updated, validated, and amended
by other research groups (13, 34, 84). Testing in other
laboratories is an important measure of model performance
because differences between a variety of cohorts from the
same population on occasion have much larger effect sizes
than differences between groups within the population [for
example, typically developing and ASD individuals, (92)]. While
unimodal models are easiest to test in other laboratories,
generalization studies (see Glossary) should also examine what
additional measures can enhance a model (84). Examples of
such an expansion of an existing neuromarker are given in
a study by Davatzikos et al. (93), who included additional
predictors alongside the SPARE-AD value (described further
below), and in a study by Drysdale et al. (61) who found
that an index of depression neurotype used in conjunction
with a connectivity index was most successful in predicting
treatment response. Multiple unimodal models can effectively
be integrated using strategies such as “voting,” “boosting,” or
other ensemble methods [(13); see Glossary]. In fact, combining
multiple modalities in a single model typically results in higher
model accuracy. Multimodal models (see Glossary) are also
preferable from a theoretical perspective when attempting to
describe the neurobiology underlying a given outcome (21, 34,
63, 94).

An essential element of model validation is testing for
construct validity. That is to say, a good neuromarker must
actually measure the concept that it is assumed to measure.
This seems straightforward, but in many cases the substantial
phenotypic overlap between disorders may make it difficult to
pinpoint what aspect of a disorder a biomarker is measuring, and
in what context it will perform poorly. An example of this could
be a classifier that supposedly separates control subjects from
individuals with substance use disorder. It is conceivable that
such a biomarker may in fact tap into externalizing symptoms
common to ADHD and substance use disorder, or inadvertently
identify individuals with ADHD symptoms, since they have
higher substance use risk than those without ADHD symptoms
(95). A biomarker assumed to measure a particular concept
should therefore also be tested using populations which it should
not have any relevance to, as well as populations to which it is
assumed to generalize well. Ideally, biomarkers should be tested
on very large, population-level samples that include a range of
“confounds.”

Validating neuromarkers developed to differentiate among
disorder subtypes is a specific challenge. For example, a study
may identify a neurotype indicative of treatment outcome
and provide a characterization of the neurotype based on
symptomatology. However, given the difficulty (or indeed
impossibility) of defining discrete disorder subtypes, indicators
of neurotype could be integrated into models that predict other
clinical outcomes such as treatment success [see (61)].

Finally, the ultimate test of the clinical utility of a biomarker
should be large-scale randomized control trials, evaluating
outcomes for patients who were assessed using traditional
methods and patients who were assessed with the help of the
biomarker (84). This step will serve as a measure of how much
use of the biomarker actually contributes to patient care in an
applied healthcare setting. At this point weighing up the cost and
the benefits of the biomarker will determine whether it is suitable
for integration into healthcare settings.

Not So Far Off After All: A Neuromarker for

Alzheimer’s Disease
The psychiatric domain which has seen the largest amount of
neuromarker research and for which some of the most promising
neuromarkers have been developed is Alzheimer’s disease (34).
This is largely due to the freely available ADNI database. ADNI
includes data from older adults who are cognitively normal
(CN), diagnosed with mild cognitive impairment (MCI), or
with Alzheimer’s Disease (AD). This stratification of participants
along what can be regarded as a continuum of cognitive
impairment and dementia represents a more ecologically valid
sampling scheme (i.e., better represents the population) than
many psychiatric neuroimaging studies. The ADNI study
collected longitudinal data from older adults, capturing cognitive
decline and transition from CN to MCI and from MCI to
AD. Due to the large sample size and range of impairment
present in this sample, researchers were able to use subsets of
participants to develop and validate a neuromarker. The SPARE-
AD classifier was originally developed using 66 CN and 56 AD
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participants (89). The classifier generates a score which separated
the AD and CN group in this sample with 94% accuracy. To
validate the classifier, data from a group of 88 MCI participants
were used. The classifier separated the MCI and CN group
with 82% accuracy. Accuracy was 74% when separating the
MCI and AD group. While confirming that the classifier has
strong validity in detecting characteristics unique to AD, these
results also show that the classifier detects factors associated
with cognitive decline more generally. The next step in terms
of model validation in this study was the classification of MCI
patients according to their SPARE-AD score into a group likely
to develop AD and a group likely not to develop AD. Based
on participants’ cognitive decline over the next 3 years the
classification accuracy of MCI individuals (n = 38) was 87%.
The classifier trained in this study was subsequently applied to
a different sample of MCI patients from the ADNI cohort (93).
This represents the first stage of generalization tests for this
model. While the classification reached 90% sensitivity (n = 69
patients transitioned to dementia), only 37% of the MCI patients
who remained stable within the timeframe of the study (n= 170)
were correctly classified (56% classification accuracy). This result
demonstrates the importance of generalization tests to obtain a
realistic estimate of how well the neuromarker performs.

SPARE-AD has also been applied to data from the Baltimore
Longitudinal Study of Aging (BLSA). Validating the classifier
on a sample drawn from a different geographical location is
an important step in determining external validity. Davatzikos
et al. (96) used data from 109 CN participants who did not
transition to MCI over a 14 year period and data from 15
individuals who transitioned from CN to MCI. They were
able to predict whether or not individuals would transition
to MCI based on the rate of change of their SPARE-AD score
(AROC = 0.89; see Glossary). Davatzikos et al. (93) integrated
the SPARE-AD classifier and a cerebrospinal fluid marker, which
improved classification accuracy from 56 to 62% (84% sensitivity,
51.2% specificity). Further evidence from a study comparing
various AD classifiers found that SPARE-AD in combination
with a measure of cognitive performance and genotype
information provided the highest classification accuracy
(97). Integrating multiple classifiers to improve accuracy is
another important step toward developing a clinically useful
biomarker.

Both studies using the ADNI database used samples including
more than 200 participants, and in total the SPARE-AD classifier
has been tested on more than 550 individuals between the studies
described here. Using larger than average samples from multiple
data collection sites made it possible to develop a neuromarker
of cognitive decline in older adults, which has been shown to
reliably identify individuals at risk for future cognitive decline.
While the rate of false positive identification was shown to be
quite high for this classifier, it is a validated tool that could
feasibly be applied in clinical contexts to make a reasonable
estimate of risk of cognitive decline in older adults. Based on the
encouraging results obtained in these studies, SPARE-AD should
continue to be tested across laboratories and scanners to reach the
final phase of the model development pipeline: population-level
generalization (34).

Summary
In this section we discussed the tools necessary to develop
neuromarkers for mental disorders. Studies that seek to identify
or test neuromarkers must take into consideration that the
population from which their sample is drawn will also be
the only population to which findings can be expected to
generalize. Furthermore, it is imperative that researchers make
use of freely available large datasets or collect data from large
samples. Studies that include a large number of participants
with a wide range of symptoms, and collect not only imaging
data but also genetics, demographic data, and so on have
the potential to produce the most clinically useful findings.
Whether researchers use supervised or unsupervised analysis
methods will depend on the question which they seek to answer.
Supervised learning is preferable when a definitive outcome (such
as relapse or disease course) is known, whereas unsupervised
learning may be more beneficial when the outcome is not so
clear (such as subtypes of diagnostic categories). For supervised
learning approaches, rigorous generalization testing through
resampling methods is crucial. Reducing the number of features
included in the model through feature selection can help to
prevent overfitting. Other dimensionality reduction strategies are
available, but researchers should be aware of the practical and
theoretical implications of choosing them. Significance should
be established using null models. To reach clinical applicability,
neuromarkers must undergo extensive generalization testing
in other laboratories, with other populations, in combination
with other biomarkers, and finally in randomized controlled
trials. Due to many researchers’ reluctance to use neuromarkers
established in other research groups, most neuromarkers have
not undergone generalization tests using other samples. An
exception to this is the SPARE-AD classifier of Alzheimer’s
disease.

WHAT TO WATCH OUT FOR WITH

NEUROMARKERS—PRACTICAL AND

ETHICAL CONSIDERATIONS

With the goal of using reliable neuromarkers in psychiatry
come a number of ethical considerations that should be
kept in mind by researchers and clinicians who are working
toward integrating neuromarkers into clinical assessments.
The most immediately relevant consideration concerning
research in this field is resource allocation. Resource
allocation for neuromarkers research should be based on
the effectiveness of treatment using current standard tools.
That is to say, groups that are not well-served by current
diagnostic, prognostic, or treatment approaches should be
the primary target of psychiatric neuromarker research
(33). Furthermore, rather than continuing to develop new
potential neuromarkers in domains which have already
identified potential biological models, research efforts should
go toward validating and updating or expanding the most
promising existing models. Adopting a component process
approach may contribute to the re-use of models across
laboratories.
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With increased focus on brain-based measures of psychiatric
conditions also comes the challenge of maintaining a holistic
view of psychiatric disorders as being caused by multiple diverse
etiological factors (98). While there may be a temptation to
prioritize brain-based methods of explanation and treatment,
there is an important balance to be struck between undervaluing
advances based on neuroimaging, and scientific reductionism
which discounts treatments and modes of interpretation
based on the mind in favor of the brain. To what extent
psychiatric science based on domains other than biology
will continue to be useful will remain to be seen. As
noted by Kendler [(98), p. 385], “having a realistic view
of the causal landscapes of psychiatric disorders can only
help.”

Another caveat to consider is that predictions are not
deterministic. In the area of healthcare this is of particular
importance, as risk assessments and prognoses based on
biological measures may well go on to inform the cost of
health insurance. On the other hand, neuromarkers indicating
the most promising treatment pathway should be seen as
objective support for the clinician’s choice of treatment,
and should therefore factor into the level of contribution
from health insurance providers to the cost of treatment.
Finding satisfactory middle ground will be complex in this
area, and will require that both researchers and clinicians
engaged in neuromarker development are aware of the possible
implications of their work for the patients they aim to
benefit.

Summary
Researchers and clinicians should remain aware that moving
from the phenomenological framework in psychiatry to a
more biologically defined approach has implications for
how mental disorders will be approached by stakeholders
in the healthcare industry. Furthermore, the goal of
neuromarker research should be to improve upon current
diagnostic and prognostic capabilities as much as possible,
which means that resources should be allocated where
neuromarkers are most promising and where they are already in
development.

SUMMARY AND CONCLUSION

In this review we have discussed why neuroimaging research
has not had a substantial influence on psychiatric practice to
date, and what is required to work toward identifying truly
useful neuromarkers—neuroimaging biomarkers—of mental
disorders. We provided an outline of the tools that are
typically used in neuropsychiatric research investigating mental
disorders, and argued that research should be focused toward
developing neuromarkers for use in applied psychiatric settings.
We presented problems inherent in the traditional group
comparison approach used in psychiatric neuroimaging research,
and suggested that broader, more population-based study
designs will be likely to have greater clinical utility. To move
toward an approach that places higher emphasis on individual
differences, it is necessary to work with large samples. It is

also advantageous not to rely on current diagnostic criteria
for mental disorders when working toward neuroimaging
biomarkers, as these may not correspond to biological subtypes
of mental disorders. Identifying neuroimaging biomarkers will
only be possible if researchers adopt multivariate regression-
type approaches, and machine learning analysis frameworks.
The generalizability of findings should be given highest priority.
Therefore, resampling methods such as cross-validation must
be used at a minimum, with external validation as the “gold
standard.” Furthermore, neuroimaging data calls for the use of
dimensionality reduction approaches such as feature selection.
In order to determine the validity of a model it is necessary
to be able to examine whether it is neurophysiologically
plausible, making interpretability an important concern when
constructing models. Before they can be implemented in
healthcare settings, neuromarkers must be tested using large
diverse samples, across a range of geographical locations and
research groups.

We believe that a fundamental shift in how research
in neuropsychiatry is conducted is necessary in order
to produce viable neuromarkers. First, it is essential that
researchers not rely solely on current diagnostic criteria when
developing neuromarkers. These criteria are unreliable, based
only on behavioral and self-reported symptoms, and they
misrepresent the etiology and underlying neuropathology of
many mental disorders. While we believe that it would be
advantageous for psychiatric nosology to be redefined based
on neuroscientific evidence, the most efficient approach to
neuromarker development will likely include a move toward
component-process based models, and a focus on individual
differences across populations. This will require a significant
shift in how researchers approach study design and analysis.
The focus of neuromarker research must be on external validity,
on the accurate representation of a model’s performance, and
on the attainment of clinically useful neuromarkers. This will
require the cooperation of publishers and funding bodies to
gather and distribute knowledge about what approaches appear
promising and what approaches do not, and to prompt and
support replication and generalizability studies. Specifically, a
population neuroscience approach including samples with a wide
range of symptoms, and data from multiple neuroimaging and
non-imaging modalities will be necessary to create far-reaching
and effective neuromarkers.

In conclusion, we believe that the field of neuromarker
research offers exciting prospects for the future of psychiatric
healthcare. As was shown with the example of the SPARE-AD
classifier, it is possible to create well-validated neuroimaging
biomarkers that augment existing prognostic capabilities.
Biological models of mental disorders have the potential to
identify individuals at risk of developing psychiatric illness,
or those in the early stages of neurodevelopmental and
neurodegenerative disorders. This knowledge would be a
valuable tool to identify those individuals who would most
benefit from early interventions or from periodic monitoring.
Psychiatry is currently decades behind most other areas of
medicine when it comes to the use of objective assessments of
disorder status or risk. However, we believe that the integration
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of big data and machine learning, which is already taking place in
neuroscience and psychology, will allow us to not only improve
healthcare through the integration of neuromarkers, but to also
gain a much better understanding of the neurobiology associated
with the development of, and recovery from, mental disorders.
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GLOSSARY

Neuromarker: A neuromarker is a biomarker based on
neuroscientific data, such as neuroimaging. Neuromarkers are
biological indicators of the presence or progression of a disease
or condition. They are generally statistical models that provide
an objective estimate of how likely it is that a given condition
is present. Neuromarkers can consist of a single variable, or be
complex multivariate models.
Brain imaging terms:

Voxel: A voxel can be thought of as a three-dimensional pixel.
Voxels are the smallest units in three-dimensional brain images
obtained using MRI.

Region of interest (ROI): ROI is a term used in neuroimaging
to describe data which contain information about a specific
area of the MRI image. ROIs will often correspond to
predefined regions within the brain, such as the amygdala or
the hippocampus. Data within an ROI are typically averaged to
include in statistical tests.

Signal to noise ratio (SNR): In imaging, SNR refers to the
ratio of signal within the data to the background “noise.” In brain
imaging terms this represents the strength of the signal coming
from the brain itself, such as from the BOLD signal, compared to
the (random) background noise which is of no interest. SNR is
normally low in neuroimaging.
Psychological terms:

Symptomatology: For mental disorders, symptomatology
refers to observable and self-reported symptoms which an
individual experiences. This may include physiological and
psychological symptoms.

Phenomenology: In psychology, phenomenology refers to the
description of an individual’s experience, and is dissociated from
objective reality.

Neurotype: A neurotype, or biological subtype of a disorder
or condition is a subset of the population that shows particular
characteristics of brain structure or function.
Statistical and machine learning terms:

Inferential statistics: The t-test is a test of the statistical
hypothesis that two samples are drawn from the same population.
The underlying assumption of the t-test is that data from the
same population would follow a normal distribution. T-tests
are often used to test whether there are statistically significant
differences between two groups., Generally, an Analysis of
variance (ANOVA) is the extension of the t-test to multiple
groups. ANOVAs test for differences in group means.

Model (Statistical model): A statistical model refers to the
formal description of the generation of data. Statistical models
can be thought of as mathematical representations of theories.
Statistical models usually describe the relationship between one

or more independent variables (such as neuroimaging data), and
some dependent variable of interest (such as symptomatology).
The multivariate models referred to throughout the text typically
have multiple input variables that are weighted depending on
how strongly they contribute to the description of the dependent
variable. The weighted input variables are then combined in a
mathematical equation that results in an estimate of the outcome
variable.

Unimodal and multimodal models: Unimodal models
include only data from one domain, such as a single type of
neuroimaging data. Multimodal models include data from more
than one modality.

Ensemble methods: Ensemble methods make it possible to
use multiple statistical models to create a summary model.
Examples of this approach are “voting,” and “boosting.” Ensemble
methods often combine results from multiple models into a new
model, weighting inputs to create a superior estimate than would
have been achievable using each model on its own.

False positive: False positive results are findings which
indicate that something is true, when it is in fact not true., False
positives are often used to describe the results of classification
studies where a member of the negative class (typically control
participants) may be erroneously classified as a member of the
positive class (typically patients).

Sensitivity and Specificity: Sensitivity refers to the number
of cases from the positive class (typically patients) that were
correctly identified by the model, and specificity refers to the
number of cases from the negative class (typically control
participants) that were correctly identified.

Area under the curve of the receiver operating

characteristic curve (AROC): The AROC refers to the integral
of the receiver operating characteristic curve (ROC). The AROC
is a frequently used metric of model fit for classification models
and logistic regression. The ROC curve tracks the rate of true
and false positive classification of the model. The true and false
positive values are on a continuum where the extremes are the
instances when all cases are classified as elements of one class.
Higher AROC values denote better model fit, and a higher rate
of true than false positive classification. The maximum AROC
value is 1, with .5 representing chance performance.

Generalization study/test: A generalization study uses a
sample that is independent of the dataset that was used to
create a model. The generalization study is used to test how
well a model performs when it is applied to a different
sample.

Clustering: Clustering or cluster analysis is a data-driven
approach which groups datapoints such that datapoints within
the same group (cluster) are more similar to each other than to
datapoints outside the group.
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