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The ability to predict outcomes from neuroimaging data has the potential to answer important clinical questions such as which
depressed patients will respond to treatment, which abstinent drug users will relapse, or which patients will convert to dementia.
However, many prediction analyses require methods and techniques, not typically required in neuroimaging, to accurately assess a
model’s predictive ability. Regression models will tend to fit to the idiosyncratic characteristics of a particular sample and consequently
will perform worse on unseen data. Failure to account for this inherent optimism is especially pernicious when the number of possible
predictors is high relative to the number of participants, a common scenario in psychiatric neuroimaging. We show via simulated data
that models can appear predictive even when data and outcomes are random, and we note examples of optimistic prediction in the
literature. We provide some recommendations for assessment of model performance.

Key Words: Addiction, imaging, machine learning, methods,
prediction, simulation

“Prediction is very difficult, especially if it’s about the future.”
Niels Bohr

I dentifying neurobiological predictors of clinically important
outcomes (e.g., which young adults will transition to psychosis;
which abstinent drug users will relapse) is important because

they could inform mechanistic models of disease and have
clinical, diagnostic utility. However, developing a regression
model to predict a particular outcome for a previously unseen
individual (as opposed to inferring a significant difference in
between-group means) is subject to some methodologic and
statistical considerations necessary to accurately assess model
performance. Such considerations, although almost axiomatic in
other fields (e.g., machine learning), are typically not required for
neuroimaging analyses, and therefore imaging researchers may
be unaware of them. Our goal is to describe how regression
models can appear—incorrectly—to be predictive, and to
describe methods for quantifying, and improving, model reliabil-
ity and validity.

Measures of neural activity such as magnetic resonance imaging,
positron emission tomography, and electroencephalography yield a
potentially large number of putative predictor variables (voxels,
electrodes, or regions of interest) that may also be combined with
other variables such as age, sex, IQ, and so on. Thus, neuroimagers
usually have many more data points relative to the number of
subjects (note that the issues we describe are not restricted to
neuroimaging, but apply to other domains, such as genetics (1–4).
In these cases, statistical methods predicting outcomes such as
group membership (e.g., logistic regression), survival models such
as time to relapse (e.g., Cox regression) or regression with variable
selection (e.g., stepwise regression) will result in overfitting and
optimism unless particular precautions are taken. Overfitting occurs
because a model derived from a particular sample will partly reflect
the unique data structure of that particular sample—including the
noise in the data (F1 Figure 1). Thus, given some training data, the

observed (“apparent”) error will be less than the (“actual”) error that
is found when we then apply the model to novel test data, a
difference that reflects our (unwarranted) optimism about the
model (this reduction is also known as shrinkage). A challenge in
generating predictive models is to minimize, and quantify, this
inherent optimism.

Quantifying model performance can be achieved in a number
of ways (e.g., percent correct per outcome category). However, the
receiver operating characteristic (ROC) curve, which compares
sensitivity versus specificity at various discrimination thresholds, is
a particularly useful metric of model performance. Importantly, the
ROC is not influenced by base rates, the prevalence of the disease
in the population, which influences a biomarker’s diagnosticity.
The area under the curve (AUC; F2Figure 2) of the ROC quantifies the
model’s ability to correctly assign a patient to the disease group. A
value of .5 denotes no prediction accuracy, 1 denotes perfect
accuracy and heuristically, .6 to .7 can be regarded as weak, .7 to
.85 as moderate, and more than .85 as good, although the
convention varies considerably by discipline and analysis goal.
Other measures include d′, the distance between the signal and
the noise means in units of standard deviations [see Stanislaw and
Todorov for more examples (5) and Bayes’ rule (6)].

Crucially, and perhaps counterintuitively to those who deal
primarily with the general linear model, optimism increases as a
function of the decreasing number of participants and the
increasing number of predictor variables in the model. (i.e.,
models appear better as sample size decreases). To illustrate
the ease with which predictive models can apparently be created,
we generated simulated data across varying numbers of obser-
vation and predictors ( F3Figure 3). Assume we designate 25 data
sets as responders (or relapsers), 25 data- sets as nonresponders,
and generate 13 predictors—each randomly related to the out-
come. Given these data, one observes an AUC of .80 in a logistic
regression (i.e., a moderate to good performance). Similarly,
assigning a random time to relapse to each member of the
relapse group produces a significant Cox regression model
(overall model significance of p ≤ .012 and 5 of 13 betas
significant at p ¼ .05). A stepwise regression with entry value
set to p ! .05 and removal set to .1 also produces a significant
model (p ¼ .014, r2 ¼ .166). Of course, purely random data are
unlikely in practice. Adding even a modest effect size to each
predictor (e.g., a mean Cohen’s d of .33) will increase the apparent
AUC to .996, whereas the actual ROC is .84. Optimism in real data
was described recently in a study predicting relapse in a sample
of cocaine users (7). Here, the training data yielded an apparent
ROC of .85, dropping to approximately .60 on test data. However,
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many studies do not try to quantify inherent optimism (8–17),
which makes it difficult for the reader to evaluate the true
predictive accuracy of a particular model.

We briefly provide some recommendations for the develop-
ment and assessment of regression models. An obvious solution
to attenuating optimism, albeit expensive in the context of
neuroimaging, is to collect more data. A minimum ratio of 10
cases per predictor is a common (18), although not a universal
(19), recommendation. Optimism can be lowered by introducing
a regularization term—a penalty for model complexity—to
constrain the size of the parameter values. Variable selection
can also be performed in combination with optimism attenuation
[e.g., (20–22)], and such approaches are generally preferable to
automated variable selection (e.g., stepwise regression). J-pruning
(23) can be used to prune decision trees and Bayesian
approaches, using previous information to constrain model
complexity, are also useful (many regularization approaches can
be interpreted from a Bayesian perspective).

Estimating the optimism can be achieved in a number of ways.
Bootstrapping (24), or variants thereof (25), involves selecting—
with replacement—the same number of data points as the original
sample. This resampling is repeated many times (i.e., "1000), and
the model performance for the bootstrapped samples is compared
with performance for the full sample. Permutation (26) involves the
random reassignment of labels (e.g., relapse or nonrelapse) to
participants, and again compares the performance on the per-
muted data, in which the structure of the data are preserved but
the outcome is random, to performance on the original data. Cross-
validation tests the ability of the model to generalize and involves
separating the data into subsets. A model is developed with a
subset of the data (the “training” set), and then the model’s
predictive prowess is tested in the fully independent remainder of
the data (the “test” set). At the extreme, data can be split in half,
but this is wasteful. Tenfold validation (27) is efficient: a model is
developed on 90% of the sample and the model’s prediction
accuracy is tested on the remaining 10%. This process is repeated
10 times (i.e., each fold serves as the test set once). Nested cross-
validation (cross-validation within the training data) is useful to
optimize parameters for some regularization techniques (e.g., the
Elastic Net). If multiple models are being assessed, then unadjusted
metrics of optimism become unreliable as the probability of
overfitting to the test data increases with multiple comparisons
(28). Recent versions of the MATLAB (The MathWorks, Natick,
Massachusetts) Statistics Toolbox contain lassoglm, used to imple-
ment the methods described in (20,21,29), bootstat for bootstrap
sampling, many functions for Bayesian analysis, and the bioinfor-
matics toolbox contains crossvalind for generating training and

testing sets for cross-validation. Recent versions of SPSS Q3(30) have
bootstrapping options. Future research could investigate the costs
and benefits of bootstrapping, which is computationally expensive
but efficient in that all the data are used, versus cross-validation for
imaging data.

One important precaution when testing the generalizability of a
model is that the training and testing subsets must always be kept
completely separate; any cross-contamination will result in opti-
mism. For example, restricting analyses to regions of interest that
were determined in an initial analysis that included all participants
will render invalid the subsequent cross-validation. Again, simulated
data can help make this point (25 participants in each group, 13
random predictors). First, we conducted a between-groups t test
and only retained significant predictors, maintaining a strict Bonfer-
roni cutoff (.05/13 ¼ .0038), repeating this procedure 10,000 times
to ensure an adequate sampling of false positives. Next, a 10-fold
validation was conducted on any predictors that, by chance, were
significant: the AUC on the “test” data was .755 (the AUC derived
from the whole group was .756). Separating the training and testing
subjects before the t test, then cross-validating, returns the expected
AUC of approximately .5. We then repeated this simulation but
added an effect size of .33 to each predictor. The AUC for the cross-
validated data was .756 (.776 for the whole group) when, as above,
the predictors were identified before separating the data into
training and test sets. In contrast, doing the separation first then
identifying the predictors on the training set yielded an AUC of just
.601 on the test data. In essence, preselecting variables provides
inaccurate information about the generalizability of a model,
although it is possible to find examples of incomplete separation
of data in the literature (31–34).

The use of neurobiological features to predict outcome
provides us with a different perspective on neural functioning
[cf. Poline and Brett (35)]. Our goal here was to highlight the need
to account for the optimism that is inherent in regression models.
We particularly hope that, in future, findings will be discussed
with respect to the optimism-corrected results rather than the
apparent error, conveying more accurately the ability of imaging
data to predict and diagnose disorders.
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Figure 1. An example of an overfit model. The (approximately linear)
relationship was modeled with a sixth-order polynomial function, which fit
the training data perfectly. However, the model generalizes poorly to the
test data.

Figure 2. An example of a receiver operating characteristic curve,
displaying sensitivity versus 1–specificity at various thresholds. The
dashed 451 line represents random classification accuracy. The area under
the solid line (shaded in gray) represents the area under the curve, a
summary metric for classification performance.
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Figure 3. Normally distributed random data, half designated as treatment
responders and half as nonresponders with varying numbers of predictor
variables (e.g., regions of interest) and numbers of participants. A logistic
regression was used to classify participants into groups (results averaged
over 280 regressions). The upper panel shows apparent predictive ability
increasing rapidly as the number of predictors increases and the number
of participants decreases, whereas the generalization to new data, as
expected, remains at chance (lower panel). AUC, area under the curve.
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