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Michael N. Smolka18, Andreas Ströhle17, Gunter Schumann10,28, Hugh Garavan1,6,11 & the IMAGEN Consortium{

A comprehensive account of the causes of alcohol misuse must ac-
commodate individual differences in biology, psychology and envi-
ronment, and must disentangle cause and effect. Animal models1

can demonstrate the effects of neurotoxic substances; however, they
provide limited insight into the psycho-social and higher cognitive
factors involved in the initiation of substance use and progression
to misuse. One can search for pre-existing risk factors by testing for
endophenotypic biomarkers2 in non-using relatives; however, these
relatives may have personality or neural resilience factors that pro-
tect them from developing dependence3. A longitudinal study has
potential to identify predictors of adolescent substance misuse, par-
ticularly if it can incorporate a wide range of potential causal factors,
both proximal and distal, and their influence on numerous social,
psychological and biological mechanisms4. Here we apply machine
learning to a wide range of data from a large sample of adolescents
(n 5 692) to generate models of current and future adolescent alco-
hol misuse that incorporate brain structure and function, individual
personality and cognitive differences, environmental factors (includ-
ing gestational cigarette and alcohol exposure), life experiences, and
candidate genes. These models were accurate and generalized to novel
data, and point to life experiences, neurobiological differences and
personality as important antecedents of binge drinking. By identi-
fying the vulnerability factors underlying individual differences in
alcohol misuse, these models shed light on the aetiology of alcohol
misuse and suggest targets for prevention.

Alcohol misuse is common among adolescents5: slightly over 40% of
all 13–14-year-old adolescents in the USA report alcohol use and 10%
of this age group exhibit regular use. These figures rise to almost 65%
for any alcohol use and 27% who report regular use by age 16 years. This
is of concern as murine models demonstrate that adolescents are more
vulnerable to alcohol-induced neurotoxicity than adults1. Early alcohol
use is a strong risk factor for adult alcohol dependence6 and therefore
identifying inter-individual vulnerabilities and predictors of alcohol use
in human adolescents is of importance. Generating such predictors, how-
ever, is challenging, not least because large sample sizes are needed to

provide accurate estimates of the small effect sizes that prevail in the
biological sciences7,8. Therefore, previous prospective studies, which
typically focus on just one type of risk factor, have necessarily yielded
modest predictions of future alcohol misuse. Moreover, previous clas-
sification approaches incorporating biological data have often been
flawed due to overfitting9,10,11.

Personality measures, particularly those assessing traits conferring
risk for substance misuse, can identify adolescents at high risk of sub-
stance misuse12. Life events in early adolescence, such as parental divorce13,
can also serve as predictors of future alcohol use. A number of candid-
ate genes for alcohol dependence have been identified14, although the
overall risk conveyed by any one polymorphism is small15. Cognitive
factors such as executive function (for example, inhibitory control), but
not attention and visual memory, distinguished non-substance-using
siblings of substance misusers from healthy controls16. Response inhi-
bition was a modest predictor of adolescent alcohol misuse (explaining
about 1% of variance) in a large sample of adolescents17. Until now, there
have been no large-sample prospective studies examining the neural
correlates of alcohol misuse, but there is some evidence of a reduction
in brain activity during tests of inhibitory control for adolescents who
subsequently engaged in heavy alcohol use18.

Here, we construct models of current and future adolescent binge
drinking by combining a wide range of data (Extended Data Table 1)
from the IMAGEN project19,20, a multi-dimensional longitudinal study
of adolescent development, using regularized logistic regression21 (Ex-
tended Data Fig. 1). First (Analysis 1), we identified the characteristics
discriminating 115 14-year-old binge drinkers (a minimum of three
lifetime binge drinking episodes leading to drunkenness by age 14) from
150 14-year-old controls (non-binge drinkers, a maximum of two life-
time uses of alcohol until at least the age of 16; see Extended Data Table 2
for participant details) returning an area-under-the-curve (AUC) receiver-
operator characteristic (ROC) value of 0.96 (95% CI 5 0.93–0.98; see
Extended Data Table 3a for all beta weights). At the optimum point in
the ROC curve, 91% of binge drinkers and 91% of non-binge drinkers
were correctly classified, significantly better than chance (P 5 8.03 10261).
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At the maximum F-score value, this classification accuracy corresponds
to a precision rate of 87% (that is, those identified as binge drinkers
who are actually binge drinkers) and a recall rate of 99% (that is, binge
drinkers that are successfully detected; Extended Data Fig. 2a, b).

The model reported in Analysis 1, although highly accurate, was
dominated by the inclusion of smoking, which often co-occurs with
alcohol use. In Analysis 2, therefore, we removed smoking and re-ran
the analyses (see Extended Data for all additional analyses with smok-
ing included), which resulted in an AUC of 0.90 (95% CI 5 0.86–0.93).
At the optimum point in the ROC curve, 82% of binge drinkers and
89% of non-binge drinkers were correctly classified (P 5 8.8 3 10248).
At the maximum F-score value the precision rate was 87% and the re-
call rate was 89% (Extended Data Fig. 2e, f). The features included in
this model, and their strength of association with group membership,
are displayed in Fig. 1a.

Figure 2a displays the brain regions that most consistently discrim-
inated current binge drinkers from non-binge-drinkers (see Extended
Data Fig. 3 for the contributions of each brain feature). The most robust
brain classifiers were in ventromedial prefrontal cortex (vmPFC) and
the left inferior frontal gyrus (IFG). The vmPFC grey matter volume
was smaller in the current binge drinkers and this group, compared to

controls, also showed decreased activity when anticipating or receiv-
ing a reward, but increased activity when processing angry faces. In the
left IFG, current binge drinkers had smaller volumes and reduced
activity when anticipating and receiving rewards and when processing
angry faces.

The performance of each domain on its own (Analysis 3), both with
and without age-14 smoking, is displayed in Extended Data Fig. 4a. The
History and Personality domains were each accurate classifiers (AUC .

0.8). Next, we sought to quantify the unique contribution of each domain
to the classification of current binge drinkers both with (Analysis 4) and
without (Analysis 5) age-14 smoking. To this end, we iteratively removed
each domain from the full model (re-calculating the optimum elastic
net parameters), and observed the relative reduction in classification
accuracy (Extended Data Fig. 4b, c). The History domain contributed
the greatest unique variance to the model (significant correlations among
features are displayed in Extended Data Fig. 5). The results of external
generalizations of the current binge drinking models with and without
nicotine (Analyses 6 and 7, respectively) are displayed in Extended Data
Fig. 2c, d, g, h.

We have described the profile of current alcohol misusers while also
demonstrating the efficacy of our modelling approach. However, to
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Figure 1 | The relationship between group membership and each feature
that was present in at least 9 folds of the final model. Position on the
horizontal represents the point-biserial correlation statistic (r) between each
feature and group membership. Negative r values indicate that higher scores are
associated with an increased likelihood to engage in binge drinking at 14. Error
bars represent 95% confidence intervals (calculated using 10,000 bootstraps).

a, Analyses 1 and 2, the classification of binge drinking at age 14 years
(n 5 265). b, Analysis 8 predicting binge drinking at age 16 years (n 5 271).
AGN, affective go/no go; hx, history; SURPS, substance use risk profile scale;
SWM, spatial working memory; GMV, grey matter volume; WMV, white
matter volume.
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identify risk factors for adolescent alcohol misuse, a matter of clinical
relevance, a model that predicts future binge drinking is required. Thus,
in Analysis 8, we compared 121 future binge drinkers (a maximum of
two drink occasions by age 14 and a minimum of three lifetime binge
drinking episodes by age 16) to the 150 controls described previously.
This model had an AUC of 0.75 (95% CI 5 0.69–0.80; Extended Data
Fig. 2i, j). At the optimum point in the AUC curve, 73% of non-binge
drinkers and 66% of binge drinkers were correctly classified, signifi-
cantly better than chance (P 5 4.2 3 10217) given a base rate of 45%
binge drinkers. This corresponds to a precision rate of 64% and a recall
rate of 93% at the maximum F-score value. The features of the final
model are displayed in Fig. 1b. Figure 2b displays the brain regions that
discriminated future binge drinkers from non-binge-drinkers and the
contributions of each functional/structural feature are displayed in Ex-
tended Data Fig. 6.

Next, we examined each domain on its own (Analysis 9). History
was still the most predictive domain; however, now its influence was
broadly comparable to Brain and Personality (Extended Data Fig. 4d),
although the unique contribution of History was more apparent when
each domain was iteratively removed from the model (Analysis 10; Ex-
tended Data Fig. 4e). Significant correlations among the features are
displayed in Extended Data Fig. 7.

Our profile of adolescent binge drinking used a large sample and was
internally valid, in that it generalized well using cross-validation. How-
ever, an outstanding question is whether or not this profile would be
applicable to a new sample with different levels of alcohol consumption,
which would speak to the dimensional nature of substance misuse22.
Thus, we applied the prediction model from Analysis 8 to a new sample
from the IMAGEN study (Analysis 11): all subjects had between 3–5
lifetime drink occasions (that is, a score of 2 on the substance misuse
questionnaire) but no binge drinking episodes by age 14; by age 16, 61
of these still had no binge-drinking episodes whereas 55 participants
had at least 3 binge-drinking episodes. Application of the model (with-
out age-14 drinking as this was the same for all participants) resulted in
similar predictability to that reported above: ROC AUC 5 0.75 (95%
CI 5 0.66–0.83). At the optimal point of the AUC 77% of binge drinkers
and 67% of non-binge-drinkers were correctly assigned (P 5 2.713 1028).
At the maximum F-score value, this corresponds to a precision rate of
65% and a recall rate of 93%. The most robust brain predictors of future
binge drinking were the right middle and precentral gyri (Brodmann

Area 6) and bilateral superior frontal gyrus (Brodmann Area 9). At age
14 future binge drinkers had reduced grey matter volume but increased
activity when receiving a reward in the superior frontal gyrus com-
pared to controls. In premotor cortex, future binge drinkers showed
greater grey matter volume and greater activity when failing to inhibit.

A number of features were common to both current and future al-
cohol misuse (Analyses 2 and 8). Life events, such as a romantic or sex-
ual relationship, were strong classifiers for both current and future binge
drinkers. Personality measures associated with binge drinking included
the novelty-seeking trait from the temperament and character invent-
ory (TCI) psychobiological model of personality23. This trait identifies
the behaviour of searching for, and feeling rewarded by, novel experi-
ences and is regarded as a heritable, dopamine-related temperament:
higher scores on Disorderliness and Extravagance (a tendency to ap-
proach reward cues) characterized both current and future binge drin-
kers. Conscientiousness (the degree to which an individual is organized,
controlled and motivated to achieve a desired goal) was lower in both
current and future binge drinkers.

Some features differed in their utility to classify current and future
binge drinkers. Disruptive family events, the personality trait of agree-
ableness, more developed pubertal status, impulsivity and higher delay
discounting (the tendency to devalue future rewards) classified current,
but not future, binge drinkers. In contrast, the anxiety sensitivity sub-
scale of the substance use risk profile scale (SURPS)24 (fear of anxiety-
related emotions and sensations due to beliefs that these emotions and
sensations could lead to harmful consequences) predicted non-binge
drinking at age 16, not at age 14. Parenchymal volume and grey:white
matter ratio predicted future, but not current binge drinking. The most
prominent brain regions for classifying current binge drinkers included
the vmPFC and the left lateral PFC, areas that have been implicated in
emotional regulation of bingeing behaviour25,26. Whereas emotional
processing areas were implicated in age-14 binge drinking, predicting
age-16 binge drinkers from data at age 14 relied relatively more on re-
gions associated with failed inhibitory control and reward outcome and
on local and global brain structure. Notably, even 1–2 lifetime alcohol
occasions by age 14 was sufficient to be an important predictor of future
binge drinking at age 16.

We have identified a generalizable risk profile for alcohol misuse in-
itiation. In contrast with the classification of current binge drinkers,
which was primarily a function of the History domain, the prediction
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Figure 2 | Brain regions associated with binge drinking and the relative
contribution of each brain metric to the classification. The average beta
weight for each brain metric (normalized to sum to 1 and averaged over the ten
outer folds). Error bars depict standard errors of the mean across the folds.
a, b, Brain regions that classify binge drinking at age 14, Analyses 1 and 2

(n 5 265). The most robust brain classifiers were in ventromedial prefrontal
cortex (a) and the left inferior frontal gyrus (b). c, d, Brain regions that predict
binge drinking at age 16, Analysis 8 (n 5 271). The most robust brain predictors
of future binge drinking were the right precentral gyrus (c) and bilateral
superior frontal gyrus (d).
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of future binge drinking relied relatively more on a combination of three
domains: History, Personality and Brain (individual ROC AUCs of 0.68,
0.67 and 0.63, respectively; Analysis 9). Thus, these results point to the
value of a multi-domain analysis for predicting adolescent alcohol mis-
use and speak to the multiple causal factors for alcohol misuse. Further,
we note that the influence of any one feature in isolation was modest, con-
sistent with data showing that effect sizes in previous studies with smal-
ler samples are likely to have been overestimated7,9. Given that the odds
of adult alcohol dependence can be reduced by 10% for each year drink-
ing onset is delayed in adolescence27, this risk profile may facilitate the
development of targeted interventions24,28, which often yield higher ef-
fect sizes than general approaches29.

METHODS SUMMARY
Informed consent was obtained from all subjects and their parents/guardians. We
collected a wide range of data at age 14, which were arranged into the following
domains: Brain, Personality, Cognition, History, Genetics and Demographics (Ex-
tended Data Table 1). Substance misuse data were acquired at both ages 14 and 16.
Functional brain activity was recorded during reward anticipation and outcome,
successful and unsuccessful inhibitions on a test of motor inhibitory control, and a
test of emotional reactivity to angry faces. Structural brain data consisted of regional
grey matter volume, total parenchymal volume, and white:grey matter ratio. Per-
sonality data included both broad personality traits and those specifically related
to substance misuse. Cognitive measures assessed IQ, delay discounting, spatial
working memory, attentional biases for affective stimuli and behavioural mea-
sures from the functional imaging tasks. The History domain included life events,
family history of alcohol and drug misuse and gestational alcohol and cigarette
exposure. We assessed 15 candidate genes related to alcohol abuse14, and demo-
graphic features included sex, pubertal development status and socioeconomic
status. To construct the models, a multistep procedure was used to create summary
scores from brain images first, which were then combined with the other data (Ex-
tended Data Fig. 1). Classification was conducted using logistic regression with
elastic net regularization21, allowing the inclusion of correlated features in sparse
model fits (that is, potentially selecting a subset of features). We report data from
the test sets of a tenfold cross validation.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Overview of IMAGEN protocols. Full details of the procedures employed by the
IMAGEN study, including details on ethics, recruitment, standardized instructions
for administration of the psychometric and cognitive behavioural measures, and
for blood collection and storage are available to view in the standard operating pro-
cedures for the IMAGEN project (http://www.imagen-europe.com/en/Publications_
and_SOP.php). Informed consent was obtained from all subjects and their par-
ents/guardians.
FMRI acquisition and analysis. Full details of the magnetic resonance imaging (MRI)
acquisition protocols and quality checks have been described previously, including
an extensive period of standardization across MRI scanners19.
Functional MRI tasks. The stop signal task (SST), previously described in ref. 20
required volunteers to respond to regularly presented visual go stimuli (arrows
pointing left or right) but to withhold their motor response when the go stimulus
was followed unpredictably by a stop-signal (an arrow pointing upwards). We cal-
culated contrast images for successful inhibitions (‘stop success’) and unsuccessful
inhibitions (‘stop fail’), both versus an implicit baseline. The monetary incentive delay
(MID) task (adapted from a task described previously30) required participants to
respond to a briefly presented target by pressing either a left-hand or right-hand
button as quickly as possible to indicate whether the target appeared on the left or
the right side of the monitor display. If the participants responded while the target
was on the screen, they scored points but if they responded before the target appeared
or after the offset of the target they received no points. A cue preceded the onset of
each trial, reliably indicating the position of the target and the number of points
awarded for a successful response. A triangle indicated no points (no win), a circle
with one line 2 points (small win) and a circle with three lines 10 points (large win).
We calculated contrast images for the anticipation period of large win minus no
win, and the outcome period for large win minus no win. The emotional reactivity
task involved passive viewing of video clips that displayed ambiguous (emotionally
‘‘neutral’’) or angry face expressions or control (non-biological motion) stimuli31.
Each trial consisted of short (2 to 5 s) black-and-white video clips depicting either a
face in movement or a control stimulus. We calculated contrast images from angry
faces minus ambiguous faces.
Personality measures. Broad dimensions of personality were assessed using the
60-item neuroticism-extraversion-openness five-factor inventory, which returns
measures on the dimensions of Extraversion, Agreeableness, Conscientiousness,
Neuroticism, and Openness to Experience as described in the five-factor model of
personality32. The substance use risk profile scale (SURPS33) assesses personality traits
that confer risk for substance misuse and psychopathology along four distinct and
independent personality dimensions; anxiety sensitivity, hopelessness, sensation
seeking, and impulsivity. The novelty seeking scale of the temperament and character
inventory-revised (TCI-R34), which is composed of four sub-scales: Exploratory
Excitability, Impulsiveness, Extravagance and Disorderliness, was administered.
Cognition. Participants completed a version of the Wechsler intelligence scale for
children WISC-IV35, of which we included the following subscales. Perceptual
Reasoning, Matrix Reasoning, Similarities and Vocabulary. The monetary-choice
questionnaire (MCQ36) was administered to provide a measure of preference of im-
mediate lower over delayed higher monetary rewards. Participants completed five
CANTAB tests: the Affective Go/No-go task, the Pattern Recognition Memory task,
the Spatial Working Memory Task, the Rapid Visual Information Processing task,
and the Cambridge Guessing Task (CGT). Behavioural data from functional imag-
ing tasks included the mean Go reaction time and the standard deviation of the
Go reaction time from the Stop Signal Task (inhibitory control). Behavioural data
from the monetary incentive delay (reward) task were as follows: the number of Big
Win trials on which the target was not hit, the number of Big Win trials on which
the target was hit, the number of Small Win trials on which the target was not hit,
the number of Small Win trials on which the target was hit, the number of No Win
trials on which the target was not hit, and the number of No Win trials on which the
target was hit. After the Emotional Reactivity tasks scanning session, participants
completed a recognition task in which they were presented with three of the faces
previously presented in the scanning session and two novel faces. Behavioural data
from this task included the number of targets and the number of foils correctly cat-
egorized. Participants were not informed before the scanning session about the sub-
sequent recall task.
History. The life-events questionnaire (LEQ) is an adaptation of the stressful life-
event questionnaire37, which uses 39 items to measure the lifetime occurrence and
the perceived desirability of stressful events covering the following domains: Family/
Parents, Accident/Illness, Sexuality, Autonomy, Deviance, Relocation, and Distress.
The life-events valence labels were as follows: very unhappy, unhappy, neutral,
happy, very happy. The pregnancy and birth questionnaire (PBQ, adapted from
ref. 38) was completed by each participant’s parent or guardian and parental ciga-
rette and alcohol use during pregnancy were recorded, then recoded as binary vari-
ables. Subjects were classified into one of three categories: family history negative

(a score of 0), neither positive nor negative (a score of 1), and family history pos-
itive (a score of 2).
Demographics. The puberty development scale (PDS39) was used to assess the pu-
bertal status of our adolescent sample. The socioeconomic status score was com-
prised of the sum of the following variables: Mother’s Education Score, Father’s
Education Score, Family Stress Unemployment Score, Financial Difficulties Score,
Home Inadequacy Score, Neighbourhood Score, Financial Crisis Score, Mother
Employed Score, Father Employed Score.
Genetics. We included single nucleotide polymorphisms (SNPs) described in a recent
review14 of genome wide association studies of alcohol dependence. Of the 30 unique
SNPs listed in this review, the IMAGEN sample contained 14 SNPS that passed
quality control, did not have a low minor allele frequency (,5%) or a high geno-
typing failure rate (.5%), and were not highly correlated (..98) with any other
available SNP. In addition, we also included an additional SNP, rs26907, reported
in ref. 40. Genetic data were available on 1,835 individuals.
Substance misuse measures. The European School Survey Project on Alcohol and
Drugs (ESPAD41) was administered. The ESPAD category scores are as follows (Score/
Lifetime occurrences): 0(0), 1(1-2), 2(3-5), 3 (6-9), 4(10-19), 5(20-39), 6(40 or more).
The primary questions of interest were regarding lifetime alcohol use (On how many
occasions (if any) have you had any alcoholic beverage to drink?) and lifetime
drunken episodes (On how many occasions (if any) have you been drunk from
drinking alcoholic beverages?).
Machine learning procedure. We aimed to classify subjects based on both imag-
ing and non-imaging data. Imaging data are comprised of a large number of po-
tential predictive variables (voxels), which results in a high likelihood of overfitting
(that is, fitting to the unique structure of a particular sample, resulting in a model
with high apparent predictive value but which generalizes poorly to unseen data)9.
Additionally, the high ratio of imaging to non-imaging variables would lead to the
non-imaging variables being overwhelmed in any direct analysis. We overcome
these issues through a multistep procedure in which each imaging contrast produced
a single summary statistic for each individual (derived by identifying regions from
different, training data), and nested cross-validation for tuning the parameters of
the model and final validation (see Extended Data Fig. 1 for a schematic). This
procedure was conducted for all seven domains (that is, all variables from Brain,
Personality, History, Cognition, Demographics, Genetics and Site were included),
for each domain separately (to assess how well each domain performed in isolation),
and for six of the seven domains (to assess the unique contribution of a domain to
the model by quantifying the decrement in performance of the full model arising
from the deletion of one domain).

We implemented tenfold cross-validation with three levels of nesting for tuning
and validating our model. A model is generated based on k 2 1 training groups,
and then applied to the remaining independent testing group. To implement cross-
validation, the data are split into k groups (here k 5 10). Each group serves as the
testing group once, resulting in k different models and predictions for every subject
based on independent data. In our approach, we had three levels of nested cross-
validation (denoted inner, middle, and outer). At the inner fold, which was used to
optimize the imaging thresholds, 72.9% (90% of 81%) of the subjects were used for
training, 8.1% (10% of 81%) for testing, generating 1,000 voxel-wise logistic regres-
sion models. At the middle fold, which was used to optimize the parameters of the
regularization, 81% (90% of 90%) of the subjects were used for training, 9% (10% of
90%) for testing, generating 100 models (note: new voxel-wise regression models
were generated at this step). At the outer fold, which was used to validate the model)
90% of the subjects were used for training, 10% for testing, generating 10 models
(note: new voxel-wise regression models were generated at this step).

Model performance was quantified using the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, which compares sensitivity versus
specificity at various discrimination thresholds. In essence, the AUC of the ROC
curve quantifies the model’s ability to correctly assign a participant to the binge
drinking group.

Generation of summary brain data (inner fold). The aim of this step was to gen-
erate brain maps of regions that differed between groups. Each iteration of Step 1
(see Extended Data Fig. 1) used 81% of the total sample: 72.9% of the sample as
training data, the remaining 8.1% as testing data. All brain data (that is, each func-
tional task and grey matter volume) were combined within a single, voxel-wise, lo-
gistic regression model, implemented via MATLAB’s glmfit function. Specifically,
at each voxel, data from reward anticipation and reward outcome contrasts from
the MID, from the stop success and stop fail trials from the SST, angry versus neutral
faces from the Faces task and proportional GMV (that is, GMV at that voxel divided
by total brain GMV) were included in a single logistic regression analysis on the
training data. Structural data were down-sampled from 1.5 mm to the same reso-
lution as functional data (that is, 3 mm).

At each voxel, the area under the curve (AUC) of the receiver-operating char-
acteristic (ROC) curve was computed on the test data. Maps of the AUC at each
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voxel and the contributions (beta weights) of each imaging contrast to the model
were calculated. Given recent concern over the appropriate statistical thresholds in
both neuroimaging and science generally8,42,43, we sought to empirically determine
the optimum, generalizable threshold for voxel-wise classification accuracy. To this
end, binary masks of classification accuracy were generated over a range of AUC
thresholds (that is, minimum values of AUC from 0.56 to 0.75 in 0.01 increments)
and a range of cluster extent thresholds (1, 4, 8, 12, 16, 20, 24 contiguous voxels) and
were applied to the contrast images (the functional data and grey matter volume) of
the novel, test data.

The binary masks from the inner fold test group, using the optimized parameters,
were then used to generate a summary statistic. This summary statistic was calcu-
lated for each imaging contrast in each subject, with the weighting based on the
AUC and the contribution (that is, beta value from the logistic regression) of each
imaging feature at each voxel, averaged over the number of voxels in the thresholded
AUC mask.

Optimization of elastic net parameters (middle fold). The optimal brain thresh-
old parameters were determined by the median best AUC and median best cluster
extent across each middle fold. That is, each of the 100 models in the middle fold
had an AUC threshold and a cluster extent that resulted in the highest classifica-
tion accuracy on a novel test set (for example, the highest ROC AUC for a particular
model on a novel test set could have been generated with a voxel-wise threshold of
AUC 5 0.67 and a cluster extent of 12 voxels). We took the median of these 100
best parameter sets (AUC threshold and voxel extent) to be the optimal set of pa-
rameters. Aggregating across the middle, and not inner fold meant that the optimized
parameters were not separate from the middle fold training data. We deliberately
used the median of the parameters across each middle fold in order to attenuate
the effects of spuriously high AUCs, and we reasoned that the impact on overfitting
in the middle fold was likely to be minimal. Note that the final, outer fold, results
were determined by performance on an entirely separate test fold (that is, the op-
timized parameters were determined on separate training data).

Separate brain maps were generated for each nested cross validation fold (that
is, 100 sets of maps for the middle fold). These summary values were then used in
the classification procedure, implemented via a logistic regression (that is, a logit
link function) with elastic net variable selection and regularization21, in combina-
tion with psychometric and other data. Feature scaling was performed on continu-
ous and ordinal data by a z-score transformation. Continuous data were Winsorized
(replacing data 63 s.d. from the mean with the value at 3 s.d. from the mean).

The elastic net has two key parameters: l (the regularization coefficient) and a
(representing the weight of lasso versus ridge optimization, with intermediate values
representing elastic net optimization). Again, we used nested cross-validation at the
middle-fold level to optimize the values of l and a. On each fold, l and a were each
set to one of 21 values (that is, all 441 combinations of l and a were tested). Matlab’s
lassoglm (which implements lasso, ridge regression or elastic net constraints) was
used to calculate the optimal model using maximum likelihood estimation. The

median of the a and l parameters that yielded the highest AUC across the middle
fold were then used as inputs to the outer loop training set.

Final validation (outer fold). In the outer fold, the optimized brain and elastic
net parameters were used to train a model on 90% of the sample, which was then
tested on the remaining 10% of the sample. Ninety-five percent confidence inter-
vals were estimated via 10,000 bootstraps.
External validation. In order to generate a single value for each brain metric for
the external validation group (that is, each of the ten main folds had slightly dif-
ferent brain maps), we applied each of the maps from the outer loop data to the
participants comprising the external validation (Analyses 6, 7 and 11). Next, we
calculated the mean value across the 10 folds for each participant in the external
validation group. Non-brain data were imputed in the same manner as the internal
group. The median l and a thresholds across all 10 folds of the internal sample
(that is, the median of the median of the best l and a values) were used as param-
eters for the elastic net.
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Extended Data Figure 1 | A schematic of the analysis protocol. A schematic
of the analysis protocol showing the inner cross-validation loop (to optimize
the imaging parameters), the middle cross-validation loop (to optimize the
elastic net parameters) and the outer loop (to quantify the generalizability). An

external validation was also performed to quantify generalizability to a slightly
different phenotype. The percentage of the sample used in each step is also
displayed. AUC, area under the receiver-operating characteristic curve.
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Extended Data Figure 2 | Receiver-operating characteristics (ROC),
precision-recall (PR) curves. a, ROC of age-14 binge drinking classification,
with age-14 nicotine included (Analysis 1). b, PR of age-14 binge drinking
classification, with age-14 nicotine included (Analysis 1). c, ROC of age-14
binge drinking external generalization, with age-14 nicotine included (Analysis
6). AUC 5 0.68, 95% CI 5 0.59–0.76). At the optimum point in the AUC
curve, 93% of binge drinkers and 34% of non-binge drinkers were correctly
classified, significantly better than chance (P 5 0.035), given a base rate of 24%
non-binge drinkers. d, PR of age-14 binge drinking external generalization,
with age-14 nicotine included (Analysis 6). At the maximum F-score value,
this corresponds to a precision rate of 47% and a recall rate of 54%. e, ROC of
age-14 binge drinking classification, with age-14 nicotine excluded (Analysis 2).
f, PR of age-14 binge drinking classification, with age-14 nicotine excluded

(Analysis 2). g, ROC of age-14 binge drinking external generalization, with age-
14 nicotine excluded (Analysis 7). AUC 5 0.80, 95% CI 0.73–0.85. At the
optimum point in the AUC curve, 95% of binge drinkers and 34% of non-binge
drinkers were correctly classified, significantly better than chance (P 5 0.016),
given a base rate of 24% non-binge drinkers. h, PR of age-14 binge drinking
external generalization, with age-14 nicotine excluded (Analysis 7). At the
maximum F-score value, this corresponds to a precision rate of 56% and a recall
rate of 57%. i, ROC of age-16 binge drinking classification (Analysis 8). j, PR of
age-16 binge drinking classification (Analysis 8). k, ROC of age-14 binge
drinking external generalization (Analysis 11). l, PR of 14-year-old binge
drinking external generalization (Analysis 11). AUC, area under the curve.
CI, confidence interval.
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Extended Data Figure 3 | Brain images showing regions that classify binge
drinkers at age 14. The bar charts show the contribution of each brain
metric to the shown clusters. The bar is the average beta weight for each brain
metric (normalized to sum to 1 and averaged over the ten outer folds).
a, b, Binge drinkers had reduced activity levels in the left putamen and left
hippocampus when anticipating a reward (a) and reduced activity in the right
hippocampus when rewards were received (b). c–e, Binge drinkers had greater

activity in the right precentral and left postcentral gyri (c) when failing to inhibit
a response and had greater activity in left and right precuneus (d) when
they were successful in inhibiting. When processing angry faces, binge drinkers
showed reduced right temporal pole and right cuneus activity (e). f, Binge
drinkers had reduced grey matter volume in bilateral ventromedial prefrontal
cortex, right inferior and left middle frontal gyri, but increased volume in
the right putamen.
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Extended Data Figure 4 | Classification accuracy for each individual
domain and the effects of removing each domain on the classification
accuracy. The y-axis represents the area under the receiver-operating
characteristic curve and the error bars represent the 95% confidence intervals
(calculated via 10,000 bootstraps). a, The classification accuracy of age-14 binge
drinking for each domain separately (Analysis 3). b, the effects of removing

each domain on the classification accuracy of age-14 binge drinking (nicotine
included in the model; Analysis 4). c, the effects of removing each domain
on the classification accuracy of age-14 binge drinking (nicotine excluded from
the model; Analysis 5). d, The classification accuracy of age-16 binge drinking
for each domain separately (Analysis 9). e, the effects of removing each
domain on the classification accuracy of age-16 binge drinking (Analysis 10).
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Extended Data Figure 5 | Correlations among the features classifying
age-14 binge drinking. Significant correlations among the selected features
(Analysis 2) are displayed (Spearman non-parametric test; P , 0.05). The

colour bar denotes the correlation coefficient. GMV, grey matter volume;
WMV, white matter volume; SWM, spatial working memory; AGN, affective
go/no go; hx, history.
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Extended Data Figure 6 | The brain images show regions that predict binge
drinking at age 16 from data collected at age 14. The bar charts show the
contribution of each brain metric to the prediction accuracy of the shown
clusters, which were derived from the training data. a, b, Future binge drinkers
had reduced activation during reward anticipation in occipito-temporal and
posterior cingulate regions (a) and for reward outcomes had reduced activity in
the left temporal pole but increased activity in bilateral superior frontal gyrus

(b). c, When failing to inhibit a motor response, future binge drinkers showed
greater activity in the right middle, medial and precentral gyri and in the
left postcentral and middle frontal gyri. d, e, Future binge drinkers showed
reduced activity in the left middle frontal gyrus when processing angry faces
(d) and also had reduced grey matter volume in the right parahippocampal
gyrus but increased grey matter volumes in the left postcentral gyrus (e).
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Extended Data Figure 7 | Correlations among the features predicting
age-16 binge drinking. Significant correlations among the selected features are
displayed (Spearman non-parametric test; P , 0.05). The colour bar denotes

the correlation coefficient. GMV, grey matter volume; WMV, white matter
volume; SWM, spatial working memory; AGN, affective go/no go; hx, history.
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Extended Data Table 1 | A list of all features that were used

Features are grouped by domain, by measure (for example, psychometric measure, functional imaging task, cognitive task) and by feature. *Not included in all analyses. {Not included in the analysis of age-14
drinking.
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Extended Data Table 2 | Subject characteristics and percentage of imputed data for each group

Summary statistics derived only from non-imputed data. The external validation current binge drinker group consisted of 190 new subjects from the IMAGEN sample with 1–2 binge-drinking episodes by age 14.
M, mean; SD, standard deviation; IQR, interquartile range.
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Extended Data Table 3 | Beta weights for classification of age-14 binge drinking and prediction of age-16 binge drinking

a, Mean beta weights (averaged over 10 outer folds) and the standard error of the mean (SEM) beta for classification of age-14 binge drinking (Analysis 1). b, Mean and SEM of the beta weights for classification of
age-14 binge drinking (Analysis 2). c, Mean and SEM of the beta weights for prediction of age-16 binge drinking (Analysis 8).
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